Direct detection and mutation analysis of low copy number...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091200

Reexamination Certificate

active

06261781

ABSTRACT:

S
TATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable.
BACKGROUND OF THE INVENTION
This invention relates to direct nucleic acid detection, particularly DNA and RNA in low copy number, without a requirement for amplification of the DNA or RNA molecules. The method is directly quantitative, utilizing capillary electrophoresis and laser-induced fluorescence to detect a target DNA-DNA or RNA-DNA probe hybrid band. The invention also relates to analysis of deletion and point mutations.
The quantitation of RNA and DNA derived from infectious agents or from cellular sources is important in the diagnosis and monitoring of a range of disease states. For example, the HIV viral load detected in serum of AIDS patients correlates to high concentrations of virus in the lymph nodes and has predictive value in assessing progression of the disease to advanced stages (see, e.g., Ho, et al.,
Nature
, 373:123 (1995); Mellors, et al.,
Ann. Intern. Med
., 123:573 (1996)). Viral titers in serum are also correlated with disease progression for other viruses such as hepatitis C virus (HCV), nonA nonB hepatitis virus other than HCV, and atypical lentiviruses. The ability to quantify the copy number of DNA (or RNA) may also be useful in the diagnosis and prognostic evaluation of certain cancers. It is increasingly understood that all cancers are multi-step genetic diseases, and a number of genetic defects have been identified, e.g., in pancreatic cancer. Early stage detection of the mutated sequences can be an important tool in a treatment arsenal, but requires quantitation of DNA (or RNA) in low copy number.
The current methods for detecting RNA and DNA quantitation in low copy number are divided into two categories; (i) those that result in the amplification of the target sequence, and (ii) those that result in amplification of a signal sequence. Amplification of the target or signal sequence increases its numbers exponentially but the final result depends upon a large number of reactions that must occur in correct sequence. The coefficients of variability (CV) may often exceed 20% or more, so that the result obtained is unreliable, and does not correlate with, e.g., the stage of disease. The coefficient of variability (CV) is defined as the standard deviation of the values obtained divided by the mean. In any detection technique, a coefficient of variability (CV) of less than 15% is the accepted standard of accuracy.
Additionally, direct measurement of RNA in low copy number in a native sample, even where adequate detection sensitivities can be achieved, is thwarted by the inherent instability of RNA-DNA duplexes. Increasing the length of the hybridized target has been found to increase both sensitivity and stability of the hybrid, but the additional nucleotide sequence combinations increase the chance of nonspecific hybridizing to fragments of host nucleic acids or partial hybridization to nonselected regions of the subject genome, thereby contributing to a falsely inflated positive value. Most of the improvements to date in low RNA copy number quantitation represent attempts to better control the multiple molecular events involved in signal or target amplification strategies.
Three main amplification systems currently available include branched chain signal amplification (bDNA), polymerase chain reaction (PCR) or in the case of a RNA target, reverse transscriptase polymerase chain reaction (RT-PCR), and nucleic acid sequence-based amplification (NASBA). When detection of target RNA is the object, bDNA and RT-PCR involve a first reaction step that converts the system from an RNA target to a DNA target. bDNA involves an isothermal two-step hybridization approach.
An initial probe hybridizing with a complementary probe contains a plurality of noncomplementary sites capable of hybridizing to further DNA strands, which in turn may hybridize sites noncomplementary to the probe sequence. As repeated layers of hybridization occur, a branched DNA structure of extreme complexity is created. The last to be annealed strand in the branched structure carries a reporter. The original DNA target molecule thus gives rise to an amplification of the signal generating capability of the system. A full explanation and description of the bDNA technique is set forth in Fultz, et al., “Quantitation of plasma HIV-I RNA using an ultra sensitive branched DNA (bDNA) assay”, in
Program and Abstracts of the
2
nd National Conference on Human Retroviruses
(1995), and product literature, L-6170 Rev. 5.0 for the Quantiplex™ HIV-RNA Assay (Chiron Corporation).
In PCR, selected primers are used to define the left and right ends of the target sequence. In RT-PCR, a cDNA is generated from the RNA template, and then an ordinary PCR amplification ensues utilizing left and right primers. Each successive round of synthesis and thermal denaturation causes an exponential increase in the number of progeny strands generated in the system. After the amplification is complete, a probe having a complementary sequence to some portion of the amplicon and carrying a reporter can be used for detecting the amplified target.
In both RT-PCR and bDNA, the original RNA target can theoretically be dispensed with, without impairing the sensitivity of the test, once the conversion to a DNA system has occurred. These methods effectively circumvent the inherent lability of the RNA target or its RNA-DNA duplex hybrid.
PCR, RT-PCR and bDNA share many of the same deficiencies. The systems rely upon the integrity of a large number of successive hybridization events. If an early hybridization event fails for any of a number of reasons such as structural (steric) hindrance, uncorrected mismatch, binding of a defective enzyme molecule, etc., the final number of copies, and therefore, the intensity of the signal will be ablated. These random occurrences help to account for the great sensitivity of the assays coupled with a widely variable CV. Commercial assays normalize variability by co-amplification of an internal standard. To control for variability, an internal standard must be amplified under the identical conditions as the target, yet must be differentiated from the target, an almost impossible task. Introducing an internal standard, however, changes the PCR reaction kinetics itself. Additionally, RT-PCR, while showing some efficacy, is very labor intensive, and not practical under normal clinical laboratory conditions. Furthermore, the use of these systems for mutation analysis is especially problematic because the systems arbitrarily introduce new mutations and routinely incorporate incorrect bases, thus, giving a false positive rate.
NASBA is an isothermal assay which uses a combination of three enzymes and flanking primers to generate multiple RNA copies of original RNA/DNA targets. Each of these serves as a new template for transcription and DNA synthesis steps. The process is initiated upon annealing of two primers, one of which contains a phage promoter, which in the ensuing cDNA provides a point of initiation for transcription. Unlike PCR where the numbers of actual cycles of amplification are nominally controlled by the number of temperature cycles, there is much less control in NASBA. The technique suffers from a lack of uniformity between different target sequences, and in the same target sequence from one run to another. The commercial form of the assay employs three internal calibrators, which are co-amplified with the target sequence.
Three techniques, bDNA, NASBA and RT-PCR described herein were recently compared in a study by Coste, et al.,
J. Med. Viro
., 50: 293 (1996). bDNA was found to be most reproducible with CVs ranging from 6-35%. Better results were achieved at high copy number, 12.4% vs. 31% for low copy number. However, sensitivity was only 68% with a lower level of detection at, e.g., 4000 HIV equivalents. NASBA was the least reliable test with CVs ranging from 13-62%, with CV averages of 20.7% for high copy number and 41.8% for low copy number. Sensitivity was 100% with a lower level of detection at,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Direct detection and mutation analysis of low copy number... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Direct detection and mutation analysis of low copy number..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct detection and mutation analysis of low copy number... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2535691

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.