Direct-chip-attach (DCA) multiple chip module (MCM) with...

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S777000, C257S048000, C257S723000, C438S015000, C438S130000

Reexamination Certificate

active

06301121

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the electronic package. More particularly, this invention relates to a novel packaging configuration by directly attaching chips on to a printed circuit board (PCB) as multiple chip module (MCM) to simplify assembling and testing processes. A new repair-chip ready site to repair a failed DCA chip of the MCM module is provided such that a simplified “package-less” packaging technology is provided where the conventional procedure of single-chip packaging and testing processes are now eliminated.
2. Description of the Prior Art
There is a challenge faced by those applying the multiple chip module (MCM) technology to package multiple electronic chips into a single module. This challenge arises from the fact that a MCM module can function properly only if every chip assembled into this MCM package is individually a good die. Also, due to the accumulative effect, even a small percentage of reject rate for the individual chips generate an unacceptable loss to the MCM packages using these chips. For example, a 99% chip acceptance rate for the individual chips, when assembled into eight-chip modules (×8 modules) as dual in-line memory module (DIMM) or single-in-line-memory module (SIMM) packages, an 8% loss or rework rate is generated which is dearly unacceptable.
FIGS. 1A-1
,
1
A,
1
B-
1
and
1
B are cross sectional views of a single chip-size-packaged (CSP) chip, and conventional multiple-chip-module assemblies implemented with multiple packaged chip-size package(CSP) and thin small outline package (TSOP) chips mounted on lead frames respectively. Referring to
FIG. 1A-1
, the intergrated circuit (IC) chip is mounted on a substrate and individually packaged as a CSP packaged chip. In
FIG. 1A
, three of these packaged CSP of
FIGS. 1A-a
are mounted on a multiple-chip-module (MCM) board. Each of these packaged CSP chip must be individually burned in and tested to assure each CSP chip is a know good die (KGD) before they are mounted on the MCM borad. Similarly, in
FIG. 1B-1
, a TSOP chip is mounted on a lead-frame and each of the TSOP chips must also be individually tested, burned in an tested again to assure every single TSOP chip is a KGD. Then a multiple of these individually tested TSOP chips mounted on lead frames are mounted on a MCM board for assembling into a MCM module. The conventional configuration and processes of assembling the MCM module require more production times, manufacturing processes, and higher costs due to the requirement of assuring only KGD chips are used to achieve a higher production yield.
In order to reduce wastes of resources committed to packaging chips which are not good dice, burn-in tests of individual chips are performed to identify the known good dice (DGD) before a MCM packaging processes are carried out. However, the processes for burning-in each individual chip or chip-size package (CSP) are very expensive due to the requirements of special testing sockets, and large dedicated burn-in board. Furthermore, difficult handling techniques are required to test these individual chips. Due to these special and expensive requirements for qualifying an intergrated circuit (IC) chip as known good die (KGD), it generally cost more to test a chip than to test a package. For the same reasons, the price of a known good die is much higher than the untested “burned in” packaged chips. Even with the high cost of testing and a much higher price to use the KGD, due to the concern of accumulative losses when chips are assembled as multiple chip modules, there is no choice but to employ the KGDs.
As shown in
FIGS. 1A and 1B
, the conventional multiple-chip-module (MCM) assemblies employ a two-level configuration. A two level configuration consists of either packaged chips with a first level substrate for packaging individual chip or a lead-frame for individual chip where known good chips are required on the MCM board. The individual chips supported on the lead-frame or the first level substrate are then mounted on a multiple chip module (MCM) board. The MCM board constitutes a second level substrate used for mounting multiple of individually packaged or lead-frame-supported chips. Additional cost are incurred in this two level substrate structure since it requires more material and processing. The device performance is also adversely affected due to slower signal transmission with additional capacitance resulted from structures of more levels. This two-level structure further presents another disadvantage that the packages have a high profile. In order to enhance device miniaturization, more and more modem applications implemented with packaged electronic chips require a reduced thickness and height. Conventional MCM packages implemented with a two-level substrate structure have very limited usefulness in modern miniaturized devices when the device requires multiple IC chips to be assembled and packaged with a very high density having small assembly size and thickness.
Therefore, a need still exists in the art to provide an improved configuration and procedure for testing and packaging the multiple chip modules. In addition to cost reduction by simplifying the test processes, the new configuration must also satisfy the need to more conveniently and economically reuse the known good dice when a known good die is packaged with other failed chips into a multiple-chip-module.
SUMMARY OF THE PRESENT INVENTION
It is therefore an object of the present invention to provide an improved configuration and procedure for testing and packaging the multiple chip modules (MCMs) without being limited by using only the tested know-good-dice. The cost of testing is reduced and the failed multiple-chip module with identified failed chip or chips can be more conveniently and economically repaired in order to overcome the aforementioned difficulties and limitations encountered in the prior art.
Specifically, it is an object of the present invention to provide an improved MCM configuration and procedure for testing and packaging multiple chips as MCM assemblies. A ready repair-package-site is provided in an MCM board. A set of contact terminals arranged according to a pattern of standard repair packaged-chip footprint on the bottom surface of a printed circuit board. The repair packaged-chip can be either of JEDEC or EIAJ standard footprints. Each of the contact terminals are connected to via connector formed in the PC board for connecting to the conductive traces on the top surface. A repair packaged-chip is ready for mounting onto the connection terminal for repairing a tested and identified failed chip. Because of the ready repair site, the burn-in processes can be directly performed on each MCM at a board level such that a requirement to use the high price known good dice to avoid wastes and yield loss is eliminated.
Another object of the present invention is to provide an improved MCM configuration and procedure for testing and packaging multiple chips as MCM assemblies by employing a repair packaged-chip site ready MCM board. A plurality of contact terminals are arranged in standard footprints ready for mounting repair packaged-chips to replace identified failed chips with burn-in and functional tests conducted at board level. The requirements of complicated and time consuming rework processes to repair a failed MCM module can be significantly reduced.
Another object of the present invention is to provide an improved MCM configuration and procedure for testing and packaging multiple chips as MCM assemblies by employing a repair packaged-chip site ready MCM board. A plurality of contact terminals are arranged as standard footprints for mounting repair packaged-chips thereon with each of these contact terminals connected to conductive traces on the top surface with via connectors formed in the MCM board. A chip select jumper is provided for each chip to de-select a failed chip and in the meantime select the repair chip through the chip select jumper. Power or ground traces can be treat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Direct-chip-attach (DCA) multiple chip module (MCM) with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Direct-chip-attach (DCA) multiple chip module (MCM) with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct-chip-attach (DCA) multiple chip module (MCM) with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2554709

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.