Direct cast lead alloy strip for expanded metal battery...

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S002000, C429S233000, C429S243000

Reexamination Certificate

active

06833218

ABSTRACT:

TECHNICAL FIELD
This invention relates to a method for making lead alloy grids for the positive and negative plates of lead acid batteries.
BACKGROUND OF THE INVENTION
Lead acid batteries are widely used in the automotive industry. The basic lead acid battery cell includes a positive plate, a negative plate, and a sulfuric acid electrolyte. The plates are held parallel and are electrically isolated by a separator. The separator is microporous and allows free movement of charges and ions through it. The space between the plates is filled with the sulfuric acid electrolyte.
The positive plate is made by applying and curing a positive paste to a lead alloy grid. The cured plate contains sulfates, hydroxides, free lead, carbonates and other complex compounds of lead. This complex paste structure is then converted to sulfates by adding acid, a process commonly referred to as “pickling.” The pickled plates are then formed, i.e. charged for the first time, by passing electric charge through the cell. This charge is supplied from an external source. The charging reaction is as follows:
The complex sulfates are converted to lead dioxide, which becomes the positive active mass. When the cell is discharged, the lead dioxide changes to lead sulfate. As the cell is recharged, lead sulfate changes back to lead dioxide, and this process keeps repeating. This cyclic process eventually results in the degradation of the structure of the positive active mass. At that point, the battery cell loses its capacity such that it is no longer useful.
The negative plate construction is similar to that of the positive plate. The negative paste has similar ingredients to the positive paste, but includes an additional material referred to as an expander. The expander provides conditions during forming that result in the formation of a high surface area lead “spongy” active mass at the negative collector surface. The negative cure paste starts out as sulfates, etc., and during forming changes to lead structures. The negative active mass thus cycles between lead and lead sulfate.
The lead acid cell system is unique because the electrolyte reacts or participates actively in the energy storage and release process. The function of electrolyte in other systems is generally to conduct charges only. A fully charged lead acid battery cell develops about 2.5 volts. Batteries based on repeated use of active materials are referred to as secondary storage batteries.
Lead acid batteries that require little to no further maintenance throughout the expected life of the battery are of most interest to the automotive industry. This type of battery is typically referred to as a maintenance-free battery. Originally, pure lead was used for making lead acid secondary storage batteries. The pure lead acted both as a current collector and active material. The energy storage quantities, however, were small. As the demand for high energy and power increased, active materials in the form of pastes and grids as collectors were developed. The function of the grid is to collect electric charge and conduct it to the terminal, as well as to provide mechanical support for the active material. The grid material should have high electrical conductivity, good mechanical strength, good resistance to corrosion in sulfuric acid, and good processability.
A considerable amount of effort has been devoted to the type of alloys used for manufacturing positive and negative grids for such maintenance-free, secondary storage batteries. Pure lead met most of the requirements for the grids except mechanical strength. Lead is soft and difficult to process. In the past, the only way pure lead could be hardened or strengthened was by cold working. However, cold working does not produce acceptable mechanical properties. Adding alloying elements to pure lead, and then cold working, hardened the lead and produced desirable mechanical properties. However, electrical conductivity was adversely affected by the alloy additions. Lead based grids were first made by casting techniques using gravity feed and book moulds. Antimony was added to lead to improve its castability. While the antimony addition provided mechanical strength for the lead alloy, it had a negative effect on the life of the battery due to a loss of water and increased self-discharge.
Expanded metal grid technology was next developed, which was less expensive than the cast grids. By this technique, a rolled or wrought alloy strip or a cast strip is slit and expanded using reciprocating dies or the like and then cut into the desired width and height dimension to form the grid. For this process, calcium addition replaced the antimony addition. A continuous cast grid process was also developed using a lead-tin-calcium alloy, which offered improved properties over the lead-antimony cast grids, but was still more expensive as compared to expanded grid processes. Various battery manufacturers currently use all of these processes.
After the grids are fabricated, the active paste is applied to the grids, generally in a continuous process. Thin and perforated paper is then applied on both sides of the plates and the plates are flash dried, which helps in handling so that the plates do not stick together. The pasted grids are heated in a steamer, typically for about 3-4 hours at about 99° C. (210° F.). Finally, the pasted grids are cured in a process that takes about 3-4 days at a curing temperature of approximately 49° C. (120° F.). It is during the curing process that the interface between the grid material and the active mass paste develops. The interface layer is essentially a lead oxide layer resulting from corrosion of the grid material. The presence of water is essential for this reaction to proceed. At the end of the curing process, the interface layer is very thin.
The cured plates are assembled into the battery. Each automotive battery consists of six separate cells, each contributing about 2-2.5 volts, and the cells are connected in series inside the battery package. Once the plates are incorporated into the package, sulfuric acid is added to the cells, and the cells are allowed to stand for about an hour for the pickling to occur. The battery is then charged for the first time, referred to as forming. After forming, the acid is removed and fresh acid is added and the battery is sealed.
In use, the interface layer grows during each charging process. Because the battery is discharged and charged repeatedly during use, this interface layer continues to grow thicker over time. Eventually, the interface layer can become thick enough to result in failure of the battery. Due to an increase in under-the-hood temperatures in most automobile applications, however, corrosion at the paste-grid interface has become a greater concern. Batteries are tested for corrosion resistance using the industry-accepted SAE J240 life test, which is conducted at 75° C. (167° F.). As the temperature increases, the corrosion rate increases even faster, i.e., the rate of reaction is an exponential function of temperature. Consequently, the interface between the active mass (paste) and the collector (grid) corrodes to form and grow the lead oxide layer at a high rate at elevated temperature. This lead oxide layer introduces resistance to the flow of electricity. Resistance is proportional to the thickness of the lead oxide layer and inversely proportional to the surface area of the grid. Thus, as the lead oxide layer thickens, the resistance increases. In some instances, separation occurs between the collector and the active mass, resulting in a loss of electrical contact therebetween, which degrades the battery operation.
By way of further explanation, it is known that the interface layer consists primarily of lead dioxide, which conducts electrons and oxygen ions. The oxygen ions diffuse from the paste side through the interface layer to the grid surface and react with lead. Thus, the interface layer grows in thickness. The volume of oxide formed is roughly 1.4 times larger than the metal volume. In addition to increasing res

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Direct cast lead alloy strip for expanded metal battery... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Direct cast lead alloy strip for expanded metal battery..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct cast lead alloy strip for expanded metal battery... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3338039

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.