Image analysis – Applications
Reexamination Certificate
2001-08-06
2003-08-19
Johns, Andrew W. (Department: 2621)
Image analysis
Applications
Reexamination Certificate
active
06608911
ABSTRACT:
TECHNICAL FIELD
The present invention relates to digital watermarking and integrating digital watermarking methods with information carriers (e.g., credit cards, smart cards, RFID cards, mag-stripe cards, etc.).
BACKGROUND AND SUMMARY
Digital watermarking is a process for modifying physical or electronic media to embed a machine-readable code into the media. The media may be modified such that the embedded code is imperceptible or nearly imperceptible to the user, yet may be detected through an automated detection process. Most commonly, digital watermarking is applied to media signals such as images, audio signals, and video signals. However, it may also be applied to other types of media objects, including documents (e.g., through line, word or character shifting), software, multi-dimensional graphics models, and surface textures of objects.
Digital watermarking systems typically have two primary components: an encoder that embeds the watermark in a host media signal, and a decoder that detects and reads the embedded watermark from a signal suspected of containing a watermark (a suspect signal). The encoder embeds a watermark by altering the host media signal. The reading component analyzes a suspect signal to detect whether a watermark is present. In applications where the watermark encodes information, the reader extracts this information from the detected watermark.
Several particular watermarking techniques have been developed. The reader is presumed to be familiar with the literature in this field. Particular techniques for embedding and detecting imperceptible watermarks in media signals are detailed in the assignee's co-pending application Ser. No. 09/503,881 and U.S. Pat. No. 5,862,260.
Digital watermarks can be exploited in a variety of applications, including authenticating electronic and physical objects and counterfeit deterrence. They may also be used in conjunction with other security technologies.
Optically Variable Devices (OVDs) are another type of technology used in security applications. OVD is a class of devices that includes Diffractive Optically Variable Image Devices (DOVIDs), such as holograms. Within the field of holography, there a variety of types of DOVIDs including, for example, Exelgram™, Kinegram™, and Pixelgram™ DOVIDs. This document uses the term hologram to generally encompass diffractive devices, including DOVIDs manufactured on metallized or clear film, by the replication of a surface relief pattern (e.g., embossed hologram), through laser exposure (e.g., photopolymer holograms), or other known processes. The state of the art of manufacturing holograms offers several methods for creating a diffraction pattern and mass reproduction of them.
FIG. 1
is a diagram illustrating a process of creating a master hologram and reproducing it. To create a master hologram, the method records a diffraction grating on a photosensitive surface, such a photoresist plate (
100
). The diffraction grating represents an interference pattern of two interfering beams of light. One way to form this interference pattern is to use a diffusely reflecting three-dimensional model. The model is illuminated by a laser whose output passes through a beam splitter to create separate beams. One of the beams is directed as a reference beam onto the photoresist for interference at a finite angle with another beam reflected from the model.
The photoresist is developed to create a surface relief pattern of the diffraction grating (
102
). Next, a highly reflective, opaque layer is applied to the surface relief pattern to create a reflective hologram. An image can then be reconstructed and viewed by reflecting light from an ordinary light source. A first order diffracted beam reconstructs the image.
The hologram may be used to create a second hologram. For example, a first hologram is illuminated with coherent light from a laser to reconstruct an image of the original model. A photoresist plate is placed at the location of the reconstructed image. In order to form a new hologram, a beam splitter is positioned in the laser output beam in order to direct a portion of its intensity directly onto the photoresist plate for interference at a finite angle with a first order diffracted beam that is diffracted from the first hologram.
In the process of creating a hologram, several exposures, each with different masks and grating parameters, may be used. For each exposure, the mask controls the portions of the photoresist plate to be exposed. Computer driven machinery may be used to create discrete grating dots or pixels at resolutions of 50 to 2000 dots per inch (dpi). These types of diffraction gratings are sometimes referred to as dot matrix OVDs.
To mass produce the hologram, a metal master of the surface relief pattern is created from the developed photoresist (
104
). One way to do this is to use a metal electroforming process to apply a metal layer on the developed photoresist plate. The resulting metal layer becomes a surface relief master used to replicate the surface relief pattern (
106
).
There are a number of ways to reproduce the hologram using the surface relief master. One way utilizes an embossing technique where the metal surface relief master is urged against thin, smooth, clear plastic film under an appropriate amount of pressure and heat in order to form a replica of that surface relief pattern. A second way utilizes a casting technique, where the surface relief metal master is used as a mold to which a clear liquid resin is applied and cured between an optically clear flexible plastic substrate and the master mold. A continuous casting process is used where the master hologram is fitted on the outside of a drum over which the substrate passes, and the resin is cured by passing ultraviolet light through the substrate while in contact with the master.
After reproducing the surface relief pattern on a film, a highly reflective, opaque layer is formed on the surface relief pattern. One way to do this is to evaporate aluminum onto the surface relief pattern formed on the film.
There are a number of alternative ways to create holograms. Another type of hologram is a Denisyuk hologram. Denisyuk holograms are recorded on silver halide film, photopolymer film or dichromated gelatin film. The resulting hologram is laminated into a card or applied to product as a tag or label.
Diffraction gratings can be creating without using light interference, but instead, using microlithography engraving technologies. This class of diffraction gratings may be classified as “non-optically recorded diffraction gratings.” Microlithography based OVD recording technologies, like electron-ion lithography, are used to form diffraction gratings with desired optical properties. Examples of such gratings include binary, blazed, curvilinear, and subwavelength (less than the wavelength of visible light) gratings.
Rather than using physical models, light sources and optical elements, diffractive structures may also be generated by computer (Computer Generated Holograms—“CGH”). For a CGH, a computer makes wavefront calculations to compute the hologram's surface profile or transmission characteristics. To create a master, the resulting holographic structure may be recorded optically by projecting a map of the computer generated holographic structure onto a photosensitive material, or using microlithography such as e-beam lithography to record the holographic structure on a surface of a master. A variety of computer implemented methods, such as Fourier Transform iterative algorithms, are described in published literature relating to computer generated holograms. See P. Stepien, Computer Generated Holograms and Diffraction Gratings in Optical Security Applications In Optical Security and Counterfeit Deterrence Techniques III, Rudolf L. van Renesse, Willem A. Vliegenthart, Editors, Proceedings of SPIE Vol. 3937 (2000).
The invention provides methods for integrating digital watermarks into holograms, watermarked hologram structures, and related applications. One aspect of the invention is a method
Brunk Hugh L.
Carr J. Scott
Decker Stephen K.
Lofgren Neil
Digimarc Corporation
Digimarc Corporation
Johns Andrew W.
Nakhjavan Shervin
Stewart Steven W.
LandOfFree
Digitally watermaking holograms for use with smart cards does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digitally watermaking holograms for use with smart cards, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digitally watermaking holograms for use with smart cards will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112985