Foods and beverages: apparatus – Cooking – With material pressing means
Reexamination Certificate
2000-09-15
2001-07-24
Simone, Timothy F. (Department: 1761)
Foods and beverages: apparatus
Cooking
With material pressing means
C099S353000, C099S374000, C099S379000
Reexamination Certificate
active
06263786
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
(Not Applicable)
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
(Not Applicable)
BACKGROUND OF THE INVENTION
The present invention relates generally to food preparation devices, and more particularly to a digitally controlled, manually actuated clamshell press including left and right upper platen sections which are individually or concurrently movable between loading/unloading and press positions, and are each rotatable into substantially parallel relation with a common lower platen during movement from the loading/unloading position to the press position.
Widely known in the food service industry are various heat press devices which are used to aid in the preparation of various food items. Such presses are often found in those commercial establishments specializing in the preparation of Mexican food and pizzas, and are used in relation to the production of, for example, tortillas, pizza crusts, and other food items (e.g., quesadillas) wherein a quantity of dough is compressed or flattened while simultaneously baked.
Though generally satisfying the intended food preparation function, such prior art presses suffer from various deficiencies which detract from their overall utility. More particularly, in certain prior art presses, an upper platen is pivotally connected to a housing so as to be rotatable or pivotable about a single axis, and thus reciprocally movable in an arcuate path toward and away from a stationary lower platen also attached to the housing. However, in these presses, the bottom surface of the upper platen extends angularly relative to the top surface of the lower platen throughout virtually the entire range of motion of the upper platen toward the lower platen, with the bottom and top surfaces not being parallel until they are virtually in direct contact with each other. As will be recognized, this particular path of movement of the upper platen toward the lower platen results in the uneven application of compressive forces to a quantity of dough or food item placed therebetween. In this regard, compressive forces are applied to those portions of the dough or food item disposed closest to the pivot axis prior to such compressive forces being applied to those portions of the dough or food item disposed furthest from the pivot axis. Since the lower and/or upper platens are heated, those portions of the dough or food item disposed closest to the pivot axis will be baked for a longer period time, and thus are more susceptible to burning or scorching. Even in the absence of such burning or scorching, those portions of the dough or food item disposed furthest from the pivot axis tend to be undercooked relative to those portions disposed closest to the pivot axis due to the arcuate movement path of the upper platen toward the lower platen.
Another deficiency with prior art presses lies in the inability to use only a portion of the upper platen for the flattening/baking operation when the size of the food item being prepared does not require the entire available surface area of the bottom surface of the upper platen. Thus, the entire bottom surface must be heated despite only a relatively small portion thereof being utilized for the flattening/baking process. The need to heat the bottom surface of the upper platen in its entirety despite only a small portion thereof being utilized is energy inefficient and cost ineffective. Moreover, the use of a single upper platen to simultaneously flatten/bake multiple quantities of dough or food items is time and energy inefficient due to the resulting “recovery” time needed between each cycle, i.e., the time needed to allow the upper platen to climb back to its prescribed operating temperature. As will be recognized, cycle times for food items prepared through the use of the press could be greatly increased if the upper platen were segregated into separate sections wherein one section could be used in the flattening/baking process while the remaining section is allowed to recover during a simultaneous loading/unloading process in relation to the food item. In prior art presses, the recovery time is also compromised by the manner in which the heating elements are placed relative to the lower platen. The prior art presses would also be more energy efficient if only portions of the upper and lower platens were heated when use of the entire available surface areas thereof is not required.
The present invention overcomes the above-described deficiencies of prior art heat presses by providing a press wherein the upper platen is separated into left and right sections which may be individually or concurrently moved between loading/unloading and press positions relative to a common, stationary lower platen to maximize cycle times. The present press is further configured such that the bottom surface of each of the left and right sections of the upper platen is “leveled” to extend in substantially parallel relation to the top surface of the lower platen during the movement of such section toward the lower platen, thus eliminating the uneven application of compressive forces and resultant effects as described above. Moreover, in the present press, heating elements are integrated directly into the lower platen in sections which may be individually or simultaneously activated, with the integration of such heating elements directly into the lower platen substantially reducing recovery times during use of the press. These, and other advantages attendant to the present invention, will be discussed in more detail below.
BRIEF SUMMARY OF THE INVENTION
In accordance with a first embodiment of the present invention, there is provided a digitally controlled, manually actuated heat press. The press comprises a housing having a lower platen attached thereto. The lower platen defines a generally planar top surface. Embedded within the lower platen are left and right heating elements which may be individually or simultaneously activated by the control unit of the press. The control unit also allows for the individual adjustment of the temperature settings for the left and right heating elements. The left and right heating elements are embedded within the lower platen in relative close proximity to the top surface thereof. Due to the integration of the heating elements directly into the lower platen itself, the “recovery” time for the lower platen during use (i.e., the time needed to cause the left and right heating elements to climb back to their set operating temperatures) is substantially reduced, thus increasing cycle times during use of the press.
The press further comprises identically configured left and right actuation handles which are pivotally connected to the housing. Each of the actuation handles is selectively movable between a loading/unloading position and a press position relative to the housing. Also included in the press are left and right transitional leveling members which are cooperatively engaged to respective ones of the actuation handles, and left and right upper platens which are cooperatively engaged to respective ones of the leveling members. The upper platens, which are preferably identically configured, each define a generally planar bottom surface.
In the present press, each of the leveling members is configured to facilitate the rotation of the bottom surface of the corresponding upper platen into generally parallel relation to the top surface of the lower platen during the movement of the corresponding actuation handle from its loading/unloading position to its press position. Thus, the bottom surfaces of the left and right upper platens and the top surface of the lower platen are caused to be extended along horizontal, generally parallel planes. Each leveling member preferably comprises an annular bearing attached to the corresponding upper platen and having a portion of the corresponding actuation handle advanced therethrough such that the bearing and hence the upper platen is rotatable thereabout. In accordance with a second embodiment of the present invention, each level
Boyer John James
Raio Steve Michael
Proprocess Corp.
Simone Timothy F.
Stetina Brunda Garred & Brucker
LandOfFree
Digitally controlled clamshell press does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digitally controlled clamshell press, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digitally controlled clamshell press will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2436309