X-ray or gamma ray systems or devices – Specific application – Absorption
Reexamination Certificate
2002-01-08
2003-05-27
Dunn, Drew A. (Department: 2882)
X-ray or gamma ray systems or devices
Specific application
Absorption
C378S056000, C378S098800, C378S207000
Reexamination Certificate
active
06570955
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention pertains to apparatus and method for non-invasively and quantitatively evaluating bone-mineral density in vivo at a given time, where the bone-mineral density is characterized in terms of mineral content (i.e., grams of bone) or in terms of areal mineral density (i.e., grams of bone per square centimeter), and to material testing in general, using radiologic techniques.
In recent years, various attempts have been made to use diverse forms of energy to assess the condition of bone tissue in vivo. The primary means utilized presently has involved the application of ionizing radiation, namely x-rays. These x-ray based methods are either extremely simplistic, which provide inaccurate and imprecise estimates of bone mineral density, or very expensive. Although providing reasonably precise and accurate estimates of bone mineral density, these high cost methods makes their widespread use problematic. This is especially true given the constraints on health care financing.
Apparatuses which utilize ionizing electromagnetic radiation are well known. A review of these radiation based methods may be found in the article by Ott et al., in the
Journal of Bone and Mineral Research
, Vol. 2, pp. 201-210, 1987. These techniques all operate on the basic principle that the attenuation of an x-ray beam depends on the amount of bone present at a particular anatomical site in a subject's body, and that this attenuation (and therefore some information on the amount of bone present) can be evaluated. Several techniques exist for performing this type of densitometric measurement, such as single photon absorptiometry (SPA), dual photon absortiometry (DPA), single energy x-ray absortiometry (SXA), dual energy x-ray absorptiometry (DXA), and quantitative computed tomography (QCT). A related but simpler bone density estimation method, known as radiographic densitometry (RA), has also been described (see, for example the 1991 publication by F. Cosman, B. Herrington, S. Himmelstein and R. Lindsay entitled “Radiographic Absorptiometry: A Simple Method for Determination of Bone Mass,” in
Osteoporosis International
, Volume 2, pp. 34-38. This technique, based on a plain radiograph, is applicable to appendicular sites only; it has mostly been applied to evaluation of the bone mineral density of the phalanges (fingers). It utilizes digital image processing to process a plain radiograph which was obtained with an aluminum alloy reference step wedge placed adjacent to the hand. Unfortunately, this technique is affected by varying amounts of soft tissue, as well as the variability of x-ray energy source spectra associated with different machines. The broad spectrum of conventional x-ray equipment implies also a phenomenon known as beam hardening. Beam hardening is the change in energy spectrum that occurs as the x-ray beam traverses the interrogated object due to the energy-dependencies of the attenuations of the materials within the object, and can have a significant effect on accuracy associated with bone mineral density estimates.
Other x-ray based techniques for bone assessment have also been described previously. These methods may be based on the evaluation of various geometric features of bone from an x-ray image. These features can include, for example, cortical bone thickness and hip axis length; these measurements are not directly related to the bone mineral density quantity described above.
Acoustic techniques have also been utilized for non-invasive bone assessment, including for example, both ultrasonic and low-frequency vibrational methods. Although these techniques have the potential for providing a great deal of information on bone density and strength, they have not yet become widely used for in vivo bone assessment. Some reasons for this are that the techniques are highly sensitive to positioning and coupling of the acoustic transducers and are also affected by soft tissue overlying the bone.
Yoshida, et al., U.S. Pat. No. 5,426,709 discloses a plain x-ray measurement method and apparatus for evaluating bone mineral density of a bone, upon determination of quantity level of light that transmits through the x-ray film. The Yoshida, et al. device adjusts the light intensity level so that it is within a predetermined quantity range of light, in comparison to that which is transmitted through an aluminum step wedge. A temperature compensation for an output from the transmitting light detecting unit, i.e., a charge coupled device image sensor, is carried out by utilizing a light shielded output from the sensor.
U.S. Pat. No. 4,811,373 to Stein discloses a device to measure bone density. In the invention, Stein describes an x-ray tube operating at two voltages to generate a pencil beam, together with an integrating detector. The detector measures the patient-attenuated beam at the two energy levels (known commonly as dual energy x-ray absorptiometry) of the pencil beam. Calibration is accomplished by-a digital computer on the basis of passing the pencil beam through a known bone-representing substance as the densitometer scans portion of the patient having bone and adjacent portions having only flesh.
Fletcher et al., in U.S. Pat. No. 3,996,471, disclose another dual energy x-ray absorptiometry method. In this invention, a target section of a living human body is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.
Alvarez et al., in U.S. Pat. No. 4,029,963, disclose a method for decomposing an x-ray image into atomic-number-dependent and density-dependent projection information. The disclosed technique is based on the acquisition of x-ray images from the low and high energy regions, respectively.
Ito et al., U.S. Pat. No. 5,122,664, disclose method and apparatus for quantitatively analyzing bone calcium. The disclosed invention is similar to dual energy x-ray absorptiometry methods, in that it uses the classic dual energy x-ray absorption subtraction analysis equations. Similar approaches are disclosed in Shimura, U.S. Pat. No. 5,187,731, and Maitrejean et al., U.S. Pat. No. 5,687,210.
Kaufman et al., U.S. Pat. Nos. 5,259,384 and 5,651,363, disclose method and apparatus for ultrasonically assessing bone tissue. In the first of the two Patents, a composite sine wave acoustic signal consisting of plural discrete frequencies within the ultrasonic frequency range to 2 MHz are used to obtain high signal-to-noise ratio of the experimental data. A polynomial regression of the frequency-dependent attenuation and group velocity is carried out, and a non-linear estimation scheme is applied in an attempt to estimate the density, strength, and fracture risk of bone in vivo. In the second of the two Patents, a parametric modeling approach is used in a comparative analysis for assessment of bone properties.
U.S. Pat. No. 3,847,141 to Hoop discloses a device to measure bone density as a means of monitoring calcium content of the involved bone. A pair of opposed ultrasonic transducers is applied to opposite sides of a patient's finger, such that recurrent pulses transmitted via one transducer are “focused” on the bone, while the receiving response of the other transducer is similarly “focused” to receive pulses that have been transmitted through the bone. The circuitry is arranged such that filtered reception of one pulse triggers the next pulse transmission; the filtering is by way of a bandpass filter, passing components of received signals, only in the 25 to 125 kHz range; and the observed frequency of retriggering is said to be proportional to the calcium content of the bone.
Doemland, U.S. Pat. No. 4,754,763 discloses a noninvasive system for testing the integrity of a bone in vivo. He uses low-frequency mechanical vibrations to characterize the state of healing in a fractured bone. The frequency response is used to classify t
Kaufman Jonathan J.
Siffert Robert S.
Cyberlogic Inc.
Dunn Drew A.
Dykema Gossett PLLC
LandOfFree
Digital x-ray material testing and bone densitometry... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital x-ray material testing and bone densitometry..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital x-ray material testing and bone densitometry... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3017741