Pulse or digital communications – Equalizers – Automatic
Reexamination Certificate
1997-12-19
2001-04-17
Pham, Chi (Department: 2631)
Pulse or digital communications
Equalizers
Automatic
C375S222000, C370S484000
Reexamination Certificate
active
06219378
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
This invention is in the field of high-speed modem telecommunications, and is more specifically directed to the initialization of communications between high-speed modems.
The high-speed exchange of digital information between remotely located computers is now a pervasive part of modem computing in many contexts, including business, educational, and personal computer uses. It is contemplated that current and future applications of high speed data communications will continue the demand for systems and services in this field. For example, video on demand (VOD) is one area which has for some time driven the advancement of technology in the area of digital information exchanges. More recently, the rapid increase in use and popularity of the Global Internet (hereinafter, the “Internet”) has further motivated research and preliminary development of systems directed to advanced communication of information between remotely located computers, particularly in effecting higher bit-rates using existing infrastructure.
One type of technology arising from the above and continuing to evolve is referred to in the art as digital subscriber line (“DSL”). DSL refers generically to a public network technology that delivers relatively high bandwidth over conventional telephone company copper wiring at limited distances. DSL has been further separated into several different categories of technologies, according to a particular expected data transfer rate, the type and length of medium over which data are communicated, and schemes for encoding and decoding the communicated data.
In each case, a DSL system may be considered as a pair of communicating modems, one of which is located at a customer site, such as a home or office computer, and the other of which is located at a network controller site, typically a telephone company central office. Within the telephone company system, this modem is connected to communicate with some type of network, often referred to as a backbone network, which is in communication with other communication paths by way of equipment such as routers or digital subscriber line access multiplexers (DSLAMs). Through these devices, the backbone network may further communicate with dedicated information sources and with the Internet. As a result, information accessible to the backbone network, such as Internet information, may be communicated between the central office DSL modem and a customer site having its own compatible DSL modem.
Within this general system, it is also anticipated that data rates between DSL modems may be far greater than current voice modem rates. Indeed, current DSL systems being tested or projected range in rates on the order of 500 Kbps to 18 Mbps or higher. According to certain conventional techniques, the data communication rates are asymmetrical. Typically, the higher rate is provided for so-called downstream communications, that is from the central office to the customer site, with upstream communication from the customer site to the central office at a rate considerably lower than the downstream rate. Most DSL technologies also do not use the whole bandwidth of the twisted pair, reserving a relatively low bandwidth channel for voice communication, so that voice and data communications may be simultaneously carried out over the same line.
The most publicized DSL technology currently under development is referred to as Asymmetric Digital Subscriber Line, or “ADSL,” and corresponds to ANSI standard T1.413. Despite the existence of this standard, debate and competition is still present in the art, particularly as to whether devices complying with the standard provide promise for future wide scale use and whether the standard requires revision. For example, while the standard currently contemplates a modulation technology called Discrete Multitone (DMT) for the transmission of high speed data, an alternative data transmission technique referred to as carrierless amplitude/phase modulation (CAP) has also recently gained favor in the field. In any event, given the current state of the art, it is contemplated that ADSL systems will communicate data over a single copper twisted pair at downstream rates on the order of 1.5 Mbps to 9 Mbps, and with an upstream bandwidth will range from 16 kbps to 640 kbps. Along with Internet access, telephone companies are contemplating delivering remote LAN access and VOD services via ADSL.
Other DSL technologies being developed include High-Bit-Rate Digital Subscriber Line (“HDSL”), Single-Line Digital Subscriber Line (“SDSL”), and Very-high-data-rate Digital Subscriber Line (“VDSL”). HDSL, unlike ADSL as described above, has a symmetric data transfer rate, communicating at the same speed in both upstream and downstream directions. Current perceived speeds are on the order of 1.544 Mbps of bandwidth, but require two copper twisted pairs. However, the operating range of HDSL is more limited than that of ADSL, and is currently considered to be effective at distances of approximately 12,000 feet or less, beyond which signal repeaters are required. SDSL delivers comparable symmetric data transfer speed as HDSL, but achieves these results with a single copper twisted pair which limits the range of an SDSL system to approximately 10,000 feet. Lastly, VDSL provides asymmetric data transfer rates at much higher speeds, such as on the order of 13 Mbps to 52 Mbps downstream, and 1.5 Mbps to 2.3 Mbps upstream, but only over a maximum range of 1,000 to 4,500 feet.
Of course, in addition to performance considerations and to the distance over which DSL communications may be carried by conventional twisted-pair infrastructure, the cost of the modem hardware is also a significant factor in the selection of a communications technology. It is therefore contemplated that a lower data rate technology may provide high-speed data communications, with downstream data rates exceeding 1 Mbps, over existing twisted-pair networks and at cost that is competitive with conventional non-DSL modems, such as 56 k, V.34, and ISDN modems.
By way of further background, data rate negotiation methods are utilized in connection with conventional modems, to establish the highest data rate at which communications may be carried out over a channel. For example, most modern analog modems execute a data rate negotiation with a dial-up host upon connection, to determine the highest common data rate that may be used over the current telephone connection.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method and system for data communications in which a remote and central office modem may initialize communications in order to maximize the available data communication rates and accuracy.
It is a further object of the present invention to provide such a method and system in which such initialization may determine the bit rate capacity at which each of multiple subcarrier channels within both an upstream and a downstream spectrum may reliably communicate data.
It is a further object of the present invention to provide such a method and system in which such initialization involves the exchange of information between modems that is also directed to the setting of equalizer filters.
It is a further object of the present invention to provide such a method and system that is particularly suited in modems that may be realized in a small number of integrated circuit devices.
Other objects and advantages of the present invention will be apparent to those of ordinary skill in the art having reference to the following specification together with its drawings.
The present invention may be implemented into a modem system, and into a method of operating the same to initialize the operating conditions of the modem-to-modem session. The modems include analog filters at the analog front end which, while reducing the modem cost, also significantly increase the channel impulse response and thus necessitate relatively long circular prefixes to e
Brady III Wade James
Moore J. Dennis
Pham Chi
Phu Phuong
Telecky , Jr. Frederick J.
LandOfFree
Digital subscriber line modem initialization does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital subscriber line modem initialization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital subscriber line modem initialization will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2552709