Digital signal processor/known good die packaging using...

Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Metallic housing or support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S108000, C438S118000, C438S456000, C438S611000, C257S734000, C257S737000, C257S784000

Reexamination Certificate

active

06335226

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a structure and procedure for providing a reusable package for use in conjunction with testing and burn-in for a digital signal processor (DSP) known good die (KGD).
BACKGROUND AND BRIEF DESCRIPTION OF THE PRIOR ART
The typical semiconductor device progresses through a life cycle toward a maturity where environmental screens, such as temperature testing and burn-in are ultimately not required. During the early phases of the device life-cycle, however, burn-in and temperature testing are required to deliver the quality and reliability of product necessary for the customer. In early life, if devices are to be delivered as KGD, these devices must also receive temperature testing and burn-in.
Presently, one of the greatest costs associated with die level KGD test and burn in carriers is the cost of design and redesign of the test carrier. Initially, the KGD test carrier must be designed so that the test contacts are correctly matched to the bond pads of the integrated circuit for electrical connection to the device. The inputs and outputs from the device will proceed through the KGD carrier contacts. The test carrier contacts are connected to metal leads that carry the electrical signals to the edge of the carrier where there are connections that interface with a test socket or burn-in socket. The trace of the metal lead that carries this signal is one of the important design concerns in the electrical performance of the test carrier. The initial design of the test carrier is quite large. The initial design also requires a tooling set to build the patterns associated with the carrier. The cost of a tooling set for a test carrier is also quite large.
If the integrated circuit then goes through a redesign to enhance the performance of the device, the test carrier must be redesigned and the tooling must be rebuilt. The redesign of the integrated circuit is a common occurrence, especially during the early life of the device. Integrated circuits average in early life a redesign about every three months. If the device has problems such as yield during fabrication or electrical performance, then a redesign can occur much more frequently. Each redesign has an associated design and tooling charge associated therewith.
The typical cycle for design and fabrication of a KGD test carrier is about six weeks. The design of the test carrier cannot occur until the final lay out of the integrated circuit is known. This cycle time is therefore added into the delivery schedule of the KGD product.
This limits the growth of the KGD business to supporting mature products that only require test screens, used to make quality and reliability levels equivalent to burned in parts, at probe or hot chuck probe. It is apparent that if a low cost method of screening the leading edge DSP product could be developed with burn-in and temperature test, then these early life DSP products could also be offered as KGD and thereby provide a significant economic advantage to the manufacturer. It is also apparent that the test carrier metal traces and leads could be easily reconfigured to adapt to the cycles of design and redesign that are associated with the integrated circuit, then significant cost and cycle time could be removed from the time required for fabrication of KGD carriers.
One option for temperature test and burn-in is to use high pin count test carriers. The established temporary test carriers generally operate below 280 pins. A temporary test carrier for leading edge DSP devices has yet to be developed and those contemplated have several technical problems that limit the development and scalability from low to high volume applications. Costs related to building special assembly techniques, unique test and burn-in infrastructure and unique unload to package for KGD are high. The line requires a separate assembly, test and burn-in infrastructure to support the production of KGD using the prior art techniques. Each step of the process is costly because the line has to separate engineering development and eventual product development.
In addition, there is generally a great deal of risk associated with developing a separate line to support carriers for KGD because the device is generally in the early life cycle and the customer requirements are often not firm. Another example is where the die reaches maturity and no longer requires the carrier technology before the required delivery.
SUMMARY OF THE INVENTION
The present invention solves three of the fundamental problems of KGD productization. First, the invention allows entry into the KGD market during the early phases of the DSP product life-cycle when temperature test and burn-in are still required. Second, the solution is a viable technical solution to burn-in and temperature test of KGD versus the proposed solutions of high pin count test carriers. The failures related to the development of the Die Mate, high cost and poor performance, amplify this need. Third, the costs involved using the present solution are much less and thus the financial risk associated with developing KGD in early life of a DSP is much more attractive.
A solution to providing DSP/KGD is to take the existing ceramic package or its equivalent in other materials, such as, for example, standard plastic packaging, and reroute the signal lines in the header, package or chip carrier base so that a special substrate can be mounted in the header to contact the die by the die bonding pads with the resulting signals from the DSP/KGD package thereby being able to match the header bond fingers existing in the header. The special substrate mounted within the package serves as a testing interface for the die product. The substrate is bonded to the package in much the same manner that a die product is bonded to the header post with aluminum bond wire. The substrate has conductive bumps which connect to the aluminum bond pads on the DSP die or the flip chip bumps. The substrate is also connected to a bonding surface that connects the substrate to the rerouted header. The conductive bumps conduct the signals to and from the device under test (DUT). The DSP device is mounted atop the bumps on the substrate bumps, similar in configuration to the procedure used in standard KGD carriers. The DSP is held in place by a spring load as is presently used in the prior art or by the temporary lid and compliant material used in the standard KGD carrier. The bumps upon the substrate can be either conductive polymer, such as, for example, as manufactured by EPI, compliant bumps, such as, for example, as manufactured by DTO or hard nickel-plated bumps, such as, for example, as manufactured by MMS. Other types of conductive bumps could serve as well.
The cost associated with this KGD system in accordance with the present invention is the cost associated with retooling the ceramic or equivalent header and the cost to build the substrates for electrical interconnection between the die and the header. This solves the problems previously presented to the DSP/KGD program by making available a test carrier with established electrical characteristics that fits into the existing package flow as, for example, the pin arrangement changes and/or the pin arrangement and number remains the same but the chip and bond pad locations thereon are shrunk or enlarged, generally the former, thereby making the header reusable.
The DSP/KGD solution of the present invention differs from the KGD carrier solutions in that, first, it utilizes the principle of maintaining the electrical test and burn-in infrastructure that is already in place for the DSP product line. This means that a new product can be provided and subjected to burn-in and the test on a single package that can use DSP/KGD and the KGD can be produced along with the package product for the same process flow and pin configuration. The KGD that result can be used for several options that can leverage the backend structure. These options include (a) a KGD die bank for customers to draw upon, (b) multichip module (MCM) die product, (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Digital signal processor/known good die packaging using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Digital signal processor/known good die packaging using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital signal processor/known good die packaging using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2847174

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.