Incremental printing of symbolic information – Ink jet – Combined
Reexamination Certificate
2000-05-18
2002-06-25
Barlow, John (Department: 2853)
Incremental printing of symbolic information
Ink jet
Combined
Reexamination Certificate
active
06409294
ABSTRACT:
The invention relates generally to the printing of digital postal indicia, and relates in particular to approaches for the non-contact measurement of velocity of a mail piece using interference patterns created by beams of coherent light.
BACKGROUND
For many decades it has been routine to print postal indicia by means of relief printing dies. By “relief dies” is meant dies in which the high points receive ink which is transferred to a mail piece. This is contrasted to intaglio print elements in which ink is applied to the entirety of the printing plate and removed from the high points, leaving ink only in the low points to be transferred to the paper. The relief printing die offers many advantages, among them that the image quality is very good due to the pressure applied by the die upon the mail piece, which tends to keep the mail piece captive and reduce the possibility of unwanted and unintended motion of the mail piece relative to the printing die. A person who might attempt to print postal indicia without paying for them would be faced with the task of creating a counterfeit printing die, or with the task of tampering with a postage meter (franking machine) to force its printing die to be used to print postage indicia that are otherwise unaccounted-for. The latter approach is unsatisfactory because the design of the postage meter is such that tampering is easy to detect through visual examination of the meter.
In such a postage meter there are accounting registers which account for postage indicia that are to be printed or that have been printed. For example, in some countries there will be a “descending register” and an “ascending register”. The former keeps track of the postage value that was paid for in advance, and when the descending register drops to some predetermined level the meter refuses to print any more postage. The latter keeps track of the total amount of postage that has ever been printed on the postage meter. The accounting registers and the printing mechanism are all within a single secure housing, and this provides a confidence level that if a postage indicium has been printed, it has been accounted for in the accounting registers. The communications between the accounting registers and the printing mechanism are secure communications because of the secure housing.
The die printing is done with fluorescent ink which provides yet another confidence level against counterfeit postal indicia.
In recent years it has been proposed by some postal authorities to print postal indicia by means of digital printing methods such as ink jet and thermal transfer, and by the use of commonly available inks and transferred pigments. With such a digital printing method the print area is typically bit-mapped, and the mail piece typically moves relative. to the print head. As the mail piece moves relative to the print head, a bit-mapped data stream is communicated to the print head and ink or transferred pigment are deposited on the mail piece in response to the bit-mapped data stream. With many such proposed systems there is no physically secure communications channel between the accounting registers and the printer.
Of course it will be appreciated that if a commonly available printer (and ink or pigment) is used, there is a substantial risk that some persons will be tempted to avoid having to pay for postage by the step of printing counterfeit postal indicia on mail pieces. This is particularly easy to do since the printed indicium could be scanned in a commonly available image scanner to arrive at a bit-mapped image that would, when printed, look quite like the original. Furthermore it will be recalled that in many such systems the communications channel between the accounting registers and the printer is, by definition, insecure. Thus the would-be counterfeiter can simply intercept the bit image of the postal indicium on its way from the accounting registers to the printer. This interception may be done in software (for example through the operating system) or in hardware (for example by capturing electrical signals passing through the Centronics-standard parallel printer cable).
The one measure that has been proposed to provide some level of protection against counterfeit postal indicia when commonly available printers are employed is the use of cryptographic authentication. The assumption is that there is a secure housing somewhere in the system, and within this housing are the accounting registers and also a cryptographic engine. The cryptographic engine is used, for example, to cryptographically “sign” the postal indicium. The post office may then examine the cryptographic signature on the mail piece and determine whether the indicium is authentic or counterfeit.
While the approach of the use of cryptographic signatures and commonly available printers is attractive from a theoretical point of view, there are practical drawbacks. It is easy enough to say that the indicium will include information that is to be examined by the post office, but on a practical level this will work only if the indicium, including the cryptographic signature, is machine-readable. It would be possible to use OCR (optical character recognition) characters that are optimized for scanning and recognition, or to use a bar code, for example a two-dimensional bar code. The US Postal Service has proposed the use of a two-dimensional bar code. The assumption is that nearly all mail pieces would be scanned and their indicia authenticated. This would require consistency checking for each indicium (e.g. that the cryptographic signature is consistent with the information that is “signed”, such as the date and meter ID number). This would also require duplicate checking to ensure that a particular indicium has not been used more than once, since presumably the system is set up so that each indicium is supposed to be unique. The information proposed to be communicated by means of the two-dimensional bar code amounts to many hundreds of bits of data. The postal indicium thus would comprise a very large bar code as well as human-readable information that approximates a postal indicium of the type that is historically familiar.
Those with experience with postage meters will readily appreciate that a postal indicium which contains the images of a historically familiar indicium and that also contains a two-dimensional bar code of several hundred bits is quite sizeable and, importantly, is at risk of being smudged or otherwise damaged. If an inkjet printer is used, there is the concern that the indicium would be touched or smudged before the ink has dried. There is the further concern that if the indicium gets wet (for example, if the envelope is exposed to rain or other moisture) then the ink may smudge. In the case of a thermal transfer image, there is the concern that the thermally transferred pigment may be removed by abrasion or other perils. There is also the concern that the mail piece may not be perfectly constant in thickness, for example, if the envelope contents do not completely fill the envelope or if there is a staple or paper clip in the area where the indicium will be printed. These factors all work against the possibility that the two-dimensional bar code can be successfully read by the post office for reason of authentication.
Even if none of these perils occurs—no moisture, no smudging, no abrasion, no paper clip or staple—there is still the problem that the two-dimensional bar code must be printed faithfully in the first place. The horizontal and vertical spacing of the pixels that make up the bar code is required to be maintained accurately. This requirement applies to each pixel individually and there is the related requirement that the pixels be consistent in size across the vertical and horizontal extent of the bar code.
As will be appreciated, it would be very convenient if the designer of the digital printing franking machine were able to assume that the mail piece were always moving at an exact and very predictable velocity relative to the print head. In such a case, the data stre
Moy Christian
Zimmermann Eric
Ascom Hasler Mailing Systems AG
Barlow John
Perman & Green LLP
Stewart Jr. Charles W.
LandOfFree
Digital postage franking with coherent light velocimetry does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital postage franking with coherent light velocimetry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital postage franking with coherent light velocimetry will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2906880