Optical: systems and elements – Holographic system or element – Hardware for producing a hologram
Reexamination Certificate
2001-05-23
2003-11-11
Nguyen, Thong (Department: 2872)
Optical: systems and elements
Holographic system or element
Hardware for producing a hologram
C359S001000, C359S009000, C359S021000
Reexamination Certificate
active
06646773
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates to methods and apparatuses for generating three-dimensional images, and in particular to devices employing light emitting sources to generate three-dimensional holograms.
BACKGROUND OF THE INVENTION
Holography is an application of laser technology, best known for its ability to reproduce three-dimensional images. Early holography was limited to using film to record intensity and phase information of light incident on the scene.
More specifically, the principle of operation of film holograms or “stereoscopic photography” is that the film records the interference pattern produced by two coherent beams of light, i.e., “recording beams”. One recording beam is scattered from the scene being recorded and one recording beam is a reference beam. The interference patterns recorded on the film encode the scene's appearance from a range of viewpoints. Depending on the arrangement of the recording beams, and therefore the reconstructing and reconstructed beams, with respect to the film, the hologram may be a transmission-type or reflection-type hologram.
For a transmission-type hologram, reconstructing the holographic image is accomplished by shining one of the recording beams, as a “reconstructing” beam, through the developed hologram. By diffraction, the recorded interference pattern redirects some of the light to form a replica of the other recording beam. This replica beam, the “reconstructed” beam, travels away from the hologram with the same variation in phase and intensity of the original beam. Thus, for the viewer, the reconstructed wavefront is indistinguishable from the original wavefront, including the three dimensional aspects of the scene.
Holography differs from stereoscopic photography in that the holographic image exhibits full parallax by affording an observer a full range of viewpoints of the image from every angle, both horizontal and vertical, and full perspective, i.e., it affords the viewer a full range of perspectives of the image from every distance from near to far. As such, a hologram contains a much higher level of visual and spatial information as compared to a stereoscopic image having the same resolution. In the same manner that a two-dimensional visual image can be represented in a two-dimensional array of picture elements, or “pixels,” a holographic image is often embodied in a three-dimensional array of volume picture elements, or “voxels.” A holographic representation of an image thus provides significant advantages over a stereoscopic representation of the same image. This is particularly true in medical diagnosis, where the examination and understanding of volumetric data is critical to proper medical treatment.
While the examination of data that fills a three-dimensional space occurs in all branches of art, science, and engineering, perhaps the most familiar examples involve medical imaging where, for example, Computerized Axial Tomography (CT or CAT), Magnetic Resonance (MR), and other scanning modalities are used to obtain a plurality of cross-sectional images of a human body part. Radiologists, physicians, and patients observe these two-dimensional data “slices” to discern what the two-dimensional data implies about the three-dimensional organs and tissue represented by the data. The integration of a large number of two-dimensional data slices places great strain on the human visual system, even for relatively simple volumetric images. As the organ or tissue under investigation becomes more complex, the ability to properly integrate large amounts of two-dimensional data to produce meaningful and understandable three-dimensional mental images may become overwhelming.
Other systems attempt to replicate a three-dimensional representation of an image by manipulating the “depth cues” associated with visual perception of distances. The depth cues associated with the human visual system may be classified as either physical cues, associated with physiological phenomena, or psychological cues, which are derived by mental processes and predicated upon a person's previous observations of objects and how an object's appearance changes with viewpoint.
The principal physical cues involved in human visual perception include: (1) accommodation (the muscle driven change in focal length of the eye to adapt it to focus on nearer or more distant objects); (2) convergence (the inward swiveling of the eyes so that they are both directed at the same point); (3) motion parallax (the phenomenon whereby objects closer to the viewer move faster across the visual field than more distant objects when the observer's eyes move relative to such objects); and (4) stereo-disparity (the apparent difference in relative position of an object as seen by each eye as a result of the separation of the two eyes).
The principal psychological cues include: (1) changes in shading, shadowing, texture, and color of an object as it moves relative to the observer; (2) obscuration of distant objects blocked by closer objects lying in the same line of sight; (3) linear perspective (a phenomenon whereby parallel lines appear to grow closer together as they recede into the distance); and (4) knowledge and understanding that is either remembered or deduced from previous observations of the same or similar objects.
The various psychological cues may be effectively manipulated to create the illusion of depth. Thus, the brain can be tricked into perceiving depth which does not actually exist. Physical depth cues are not subject to such manipulation; the physical depth cues, while generally limited to near-range observation, accurately convey information relating to an image. For example, the physical depth cues are used to perceive depth when looking at objects in a small room. The psychological depth cues, however, must be employed to perceive depth when viewing a photograph or painting (i.e., a planar depiction) of the same room. While the relative positions of the objects in the photograph may perhaps be unambiguously perceived through the psychological depth cues, the physical depth cues nonetheless continue to report that the photograph or painting is merely a two-dimensional representation of a three-dimensional space.
Stereo systems depend on image pairs each produced at slightly different perspectives. The differences in the images are interpreted by the visual system (using the psychological cues) as being due to relative size, shape, and position of the objects and thus create the illusion of depth. A hologram, on the other hand, does not require the psychological cues to overrule the physical depth cues in order to create the illusion of a three-dimensional image; rather, a hologram produces an actual three-dimensional image.
Conventional holographic theory and practice teach that a hologram is a true three-dimensional record of the interaction of two beams of coherent, i.e. mutually correlated light, in the form of a microscopic pattern of interference fringes. More particularly, a reference beam of light is directed at the film substrate at a predetermined angle with respect to the film. An object beam, which is either reflected off of or shines through the object to be recorded, is generally normally (orthogonally) incident to the film.
The reference and object beams interact within the volume of space occupied by the film and, as a result of the coherent nature of the beams, produce a standing (static) wave pattern within the film. The standing interference pattern selectively exposes light sensitive elements within the photographic emulsion making up the film, resulting in a pattern of alternating light and dark lines known as interference fringes. The fringe pattern, being a product of the standing wave front produced by the interference between the reference and object beams, literally encodes the amplitude and phase information of the standing wave front. When the hologram is properly re-illuminated, the amplitude and phase information encoded in the fringe pattern is replayed in free space, producing a
Board of Regents , The University of Texas System
Gardere Wynne & Sewell LLP
Lavarias Arnel C.
Nguyen Thong
LandOfFree
Digital micro-mirror holographic projection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital micro-mirror holographic projection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital micro-mirror holographic projection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3158300