Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor
Reexamination Certificate
1998-06-29
2001-06-26
Hannaher, Constantine (Department: 2878)
Radiant energy
Invisible radiant energy responsive electric signalling
With or including a luminophor
C250S363020, C250S390010
Reexamination Certificate
active
06252232
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to imaging and, more particularly, to emissions tomography imaging.
BACKGROUND OF THE INVENTION
The signal processing described herein is primarily described in the context of emission tomography medical imaging. The processing, however, can be utilized in connection with many other types of scintillation systems (e.g., well logging systems). Therefore, the discussion regarding medical imaging describes, by way of example, one of the many modalities in which the signal processing may be implemented.
One known type of emission tomography medical imaging is generally known as positron emission tomography (PET). PET scanners are utilized to generate images of, for example, portions of a patient's body. Positron annihilation events are utilized in generating such images. Positrons (a positron is the antiparticle of the electron) are emitted by radionuclides prepared using a cyclotron or other device. The radionuclides are employed as radioactive tracers called “radiopharmaceuticals” by incorporating them into substances, such as glucose or carbon dioxide.
The radiopharmaceuticals are injected into the patient and become involved in such processes as blood flow, fatty acids, glucose metabolism, and synthesis. Positrons are emitted as the radionuclides decay. The positrons travel a very short distance before encountering an electron, and when that occurs, the position and electron annihilate emitting two photons directed in nearly opposite directions.
In some known PET scanners, two detector heads located one hundred and eighty degrees apart rotate around a patient. Each detector head includes crystals, referred to as scintillators, to convert the energy of each 511 keV photon into a flash of light that is sensed by a photomultiplier tube (PMT). Coincidence detection circuits connect to the detectors and record only those photons that are detected simultaneously by the detector. The number of such simultaneous events indicates the number of positron annihilations that occurred along a line joining the two opposing detectors.
During a scan, hundreds of millions of events are detected and recorded to indicate the number of annihilation events along lines joining pairs of detectors in the ring. The collected data is used to reconstruct an image. Further details regarding PET scanners are set forth in U.S. Pat. Nos. 5,378,893, 5,272,343, and 5,241,181, all of which are assigned to the present assignee.
Generally, by maximizing the count rate (i.e., the number of detected events), the performance of the imaging system is enhanced. The anode signals from the PMTs must be processed to provide a good measurement of the integrated signal strength. Two known methods typically are utilized for processing the anode signals. In one method, the signal pulse is shaped by a filter (RC-CR, Gaussian, etc.), and the peak value of the shaped pulse is then digitized. The pulse shaping method provides the advantage of low noise and produces an output without the necessity of a trigger circuit. However, the shaped pulse is wide and the pile up of the filtered/shaped pulses limits the usefulness of the circuit at high count rates.
The other known method is referred to as a switching integrator method. Specifically, a timing pickoff circuit is used to detect the leading edge of the signal pulse. The output of the timing pickoff circuit then initiates operation of an integrator (either analog or digital) which integrates the signal pulse. The switching integrator method does not require that the pulse be broadened (filtered). Therefore, this method is less affected by pileup at high count rates. However, the circuit does not produce an output unless a trigger was detected and the circuit is dead during the integration, which adversely impacts the count rate.
To reduce the effect of the dead time of the integrator on the overall system dead time, multiple integrators can be used on each signal. If a pulse is detected while one integrator is processing an event, the anode signal is switched to another integrator which is not in use. The integration of the first pulse can be stopped when a second pulse is detected and output of the integrator corrected for the shorter integration time. The output value from the first integrator can be used to correct the output value of the second integrator for the contribution from the pileup of the first pulse with the second pulse.
Operating a nuclear camera in a 511 keV coincidence detection mode requires that the detector heads function at as high a count rate as possible with minimum dead time and pileup. It would therefore be desirable to combine the advantages of the pulse shaping method (i.e., continuous output and minimum dead time) with the advantages of the integrator method (i.e, minimum pileup and the ability to easily correct pileup between pulses).
SUMMARY OF THE INVENTION
These and other objects may be attained by a detector including opposed detector heads having anode signal processors constructed in accordance with the present invention. More particularly, each detector head includes a scintillator and a plurality of photomultiplier tubes (PMTs) positioned adjacent the scintillator. Each PMT output is coupled to a pre-amplifier, and the pre-amplifier output is coupled to both an anode signal processor and an event processing unit. The event processor unit combines the signals from all the PMT anodes and generates a time stamp, a baseline enable, an event trigger, and an event select signal.
The anode signal processor, as described below in more detail, performs a sliding box car integration of each PMT anode signal, corrects for baseline shifts and pileup from the tails of previous events, varies the length of the box car based on the time between events, and uses a peak detection circuit to reduce the dependence of the integrated value on timing differences between the asynchronous events and the synchronous ADC conversion. The outputs of anode processors are combined to provide the X and Y coordinates, and the energy E, of an event. The outputs from each head processor are then combined in a coincidence processor to provide the corrected positions and energies of coincidence events. The above described detector heads function at a high count rate with minimum dead time and pileup.
REFERENCES:
patent: 5241181 (1993-08-01), Mertens et al.
patent: 5272343 (1993-12-01), Stearns
patent: 5309357 (1994-05-01), Stark et al.
patent: 5378893 (1995-01-01), Murray et al.
patent: 5495106 (1996-02-01), Mastny
Heukensfeldt Jansen Floribertus
McDaniel David L.
Armstrong Teasdale LLP
Cabou Christian G.
General Electric Company
Hannaher Constantine
Israel Andrew
LandOfFree
Digital integrator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital integrator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital integrator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2473546