Digital imaging system for assays in well plates, gels and...

Optical: systems and elements – Lens – Multiple component lenses

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S242000, C359S245000, C435S005000, C514S04400A

Reexamination Certificate

active

06498690

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to assay analyzing systems and, more particularly, concerns a system and method for creating digital images of randomly arranged specimens (e.g. beads within gels, colonies within petri dishes) or specimens arranged in regular arrays (e.g. wells in plastic plates, dots spotted onto membranes). The invention is capable of creating digital images and performing automated analyses of specimens which emit very low levels of fluorescence, chemiluminescence, or bioluminescence. More particularly, the invention is designed for the analysis of luminance arising from assays within well plates and gel media, and on membranes, glass, microfabricated devices, or other supports.
BACKGROUND OF THE INVENTION
Types of Assays
Many chemical and molecular biological assays are designed so that changes in the absorbance, transmission, or emission of light reflect reactions within the specimen. Therefore, instruments used to quantify these assays must detect alterations in luminance.
Wells. Some assays are conducted within discrete flasks or vials, while others are performed within plastic plates fabricated to contain a number of regularly spaced wells. “Well plate” assays are higher in throughput and lower in cost than similar assays in discrete containers. Standard well plates contain 96 wells in an area of 8×12 cm. The trend is to higher numbers of wells, within the same plate size. Today's highest commercial density is 384 wells. Very high density arrays of small wells (microwells, e.g. thousands/plate with a fill volume of less than 1 ul/well) are under development, and will become commercially available as microwell filling and detection technologies mature.
Dot blots. Grids of small dots (reactive sites) are placed onto flat support membranes or slips of treated glass. A high density grid can contain many thousands of discrete dots. Grid assays usually involve hybridization with synthetic oligonucleotides, to look for genes containing specific sequences, or to determine the degree to which a particular gene is active. Applications include library screening, sequencing by hybridization, diagnosis by hybridization, and studies of gene expression. High density grids provide the potential for very high throughput at low cost, if analyzing the grids can be made simple and reliable. Therefore, considerable commercial attention is directed at companies developing technology for creating, detecting, and analyzing high density arrays of genomic sequences.
Combinatorial assays. Some assays involve small particles (typically beads coated with compounds) which act as the reactive sites. There might be many thousands of beads, each coated with a different compound (e.g. molecular variants of an enzyme) from a combinatorial library. These beads are exposed to a substance of interest (e.g. a cloned receptor) in wells, or in a gel matrix. The beads which interact with the target substance are identified by fluorescence emission or absorption in the region around each bead. Beads which interact are surrounded by faint areas of altered luminance. Very sensitive detectors are required to identify the subtle alterations in luminance around the beads that interact with the target.
Electrophoretic separations. A solubilized sample is applied to a matrix, and an electrical potential is applied across the matrix. Because proteins or nucleic acids with different amino acid or nucleotide sequences each have a characteristic electrostatic charge and molecular size, components within the sample are separated by differences in the movement velocities with which they respond to the potential. The separated components are visualized using isotopic, fluorescent, or luminescent labels. In many cases (e.g. chemiluminescence), the luminance from the specimen is very dim.
Assays which occur within a regularly spaced array of active sites (wells, dot blots within a grid) can be referred to as fixed format assays. Assays which involve specimens that are irregularly distributed within a gel or blot matrix can be termed free format assays.
Fixed format assays are usually performed without imaging. In contrast, free format assays require the use of image analysis systems which can detect and quantify reactions at any position within an image.
Instruments designed for fixed format assays generally lack imaging capabilities, and have not been applied to free formats. Similarly, very few imaging instruments designed for free formats have been applied to wells, and other fixed format targets.
Nonimaging Counting Systems
Nonimaging counting systems (liquid scintillation counters, luminometers, fluorescence polarization instruments, etc.) are essentially light meters. They use photomultipliers (PMTs) or light sensing diodes to detect alterations in the transmission or emission of light within wells. Like a light meter, these systems integrate the light output from each well into a single data point. They provide no information about spatial variations within the well, nor do they allow for variation in the packing density or positioning of active sites.
Each PMT reads one well at a time, and only a limited number of PMTs can be built into a counting system (12 is the maximum in existing counting systems). Though the limited number of PMTs means that a only few wells are read at a time, an array of wells can be analyzed by moving the PMT detector assembly many times.
The major advantages of nonimaging counting systems are that they are a “push-button” technology (easy to use), and that the technology is mature. Therefore, many such instruments are commercially available, and their performance is well-characterized.
The major disadvantages of counting systems are:
a. Limited flexibility—few instruments can cope with 384 wells, and higher density arrays of fluorescent or luminescent specimens are out of the question.
b. Fixed format only—designed as well or vial readers, and cannot read specimens in free format.
c. Slow with dim assays—although scanning a few wells at a time can be very fast when light is plentiful, dim assays require longer counting times at each position within the scan. As there are many positions to be scanned, this can decrease throughput.
In summary, non-imaging counting systems are inflexible and offer limited throughput with some specimens.
Scanning Imagers
For flat specimens, an alternative to nonimaging counting is a scanning imager. Scanning imagers, such as the Molecular Dynamics (MD) Storm, MD FluorImager, or Hitachi FMBIO pass a laser or other light beam over the specimen, to excite fluorescence or reflectance in a point-by-point or line-by-line fashion. Confocal-optics can be used to minimize out of focus fluorescence (e.g. the Biomedical Photometrics MACROscope), at a sacrifice in speed and sensitivity. With all of these devices, an image is constructed over time by accumulating the points or lines in serial fashion.
Scanning imagers are usually applied to gels and blots, where they offer convenient operation. A specimen is inserted and, with minimal user interaction (there is no focusing, adjusting of illumination, etc.), the scan proceeds and an image is available. Like the nonimaging counting system, the scanning imager is usually a push-button technology. This ease of use and reasonably good performance has lead to an increasing acceptance of scanning imagers in gel and blot analyses.
Scanning imagers have four major shortcomings:
a. Slow scanning. The beam and detector assembly must be passed over the entire specimen, reading data at each point in the scan. Scanning a small specimen could easily take 5-10 minutes. A large specimen might take ½ hour to scan. This slow scan limits throughput, and complicates the quantification of assays that change during the scan process.
b. Limited number of wavelengths. A limited number of fluorescence excitation wavelengths is provided by the optics. Therefore, only a limited number of assay methods can be used.
c. Low sensitivity. Most scanning imagers exhibit lower sensitivity than a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Digital imaging system for assays in well plates, gels and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Digital imaging system for assays in well plates, gels and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital imaging system for assays in well plates, gels and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2996940

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.