Digital GMSK filter

Pulse or digital communications – Transmitters – Angle modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S274000, C375S216000, C341S141000, C341S153000, C330S100000

Reexamination Certificate

active

06771711

ABSTRACT:

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates in general to modulation systems for frequency shift keying with an upstream Gaussian filter, referred to as Gaussian minimum shift keying (GMSK) modulation systems. In particular, it relates to an improved GMSK filter for such GMSK modulation systems.
GMSK modulation is frequently used in present-day cordless telephone systems or mobile radio systems. In these modulation systems, with an upstream Gaussian filter, referred to as GMSK modulation systems, a carrier signal is modulated with a Gaussian-filtered digital data signal. Frequency modulation (FM) or quadrature modulation may be used for modulation in this case. Since quadrature modulation requires linear I and Q paths which match one another very exactly, and also requires a phase shifter and a mixing module, it is relatively complex to implement. Thus, for cost reasons, frequency modulation is frequently used, since it is simpler to implement.
Frequency modulation uses a voltage controlled oscillator, referred to as a VCO. The digital data signal used for modulation is for this purpose filtered by a Gaussian filter. The Gaussian filter ensures that the digital square-wave signals, which represent the actual data signal, are smooth to a certain extent. To a certain extent, this represents a low-pass filter and ensures that no excessively abrupt sudden phase changes occur. It is thus possible to produce a relatively narrowband modulated carrier signal. The signal produced at the output of the Gaussian filter then drives the voltage controlled oscillator (VCO).
The Gaussian filter can be implemented in various ways. For example, it may be in the form of an analog filter element with discrete components, as is used in the Siemens cordless DECT telephones. Alternatively, it may be in the form of a digital filter, as is used, for example, in the Phillips and NSC cordless telephones.
In the GMSK filters normally used until now, digital preprocessing followed by digital/analog conversion was carried out by an X-bit digital/analog converter (D/A converter). As for any digital/analog conversion, the digital/analog conversion necessarily results in quantization errors due to the step function used in the D/A converter. The quantization errors can be reduced by reducing the size of the steps used in the D/A converter, by increasing its resolution and hence its bit length.
Conventional D/A converters, which operate on the current source principle, have binary-weighted current sources. The individual current sources in this case emit currents which represent a binary multiple of a reference current Iref. They thus have magnitudes Iref, 2*Iref, 4*Iref . . . 2{circumflex over ( )}N*Iref. Any digital value can thus be produced by simple addition. One problem with these D/A converters is that, when switching to the most significant bit (MSB), switching is carried out from the sum of all the reference currents, apart from the largest reference current, to the largest reference current. If the reference currents are now not precisely matched, which is virtually always the situation in practice, there is a sudden change in the converter characteristic. This can result in the production of radio-frequency sideband signals, which contravene specified sideband suppression.
In D/A converters having a voltage output, reference voltages are added. The voltages can be added actively via a buffer, or passively via resistors. In the passive version, however, the output resistance is not constant, and has a relatively high value. Furthermore, resistors are not particularly suitable for integration, since they require a large surface area for their implementation. The voltages are therefore normally added via a buffer that requires a sufficiently wide bandwidth (in this case in the order of magnitude of 10 MHz). However, such a buffer also requires a relatively large surface area for its implementation, and consumes a large amount of current.
In addition, conventional D/A converters require a digital filter. This is frequently in the form of a table stored in a read only memory (ROM).
The GMSK filters that are used are intended to be implemented on a minimum surface area in the course of the ever greater miniaturization of electronic appliances. At the same time, however, the filters are intended to be as accurate as possible.
International Patent Disclosure WO 97/04525 describes a digital GMSK filter which adds currents from a large number of individual current sources to produce a total current which is converted to a corresponding voltage value by a resistor. The current sources, which are weighted in accordance with the desired filter function, are in this case driven via a shift register.
International Patent Disclosure WO 97/33414 A specifies a configuration for pulse-shaping for GMSK modulation. The digital data stream received by the configuration is converted by read only memories, logic circuits and a digital/analog converter to an analog control signal for a VCO.
A further digital-to-analog converter for producing a GMSK-weighted analog signal is described in Published, European Patent Application EP 0 743 759 A1.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a digital GMSK filter which overcomes the above-mentioned disadvantages of the prior art devices of this general type, whose accuracy is as high as possible and which can be implemented on a minimal surface area.
With the foregoing and other objects in view there is provided, in accordance with the invention, a digital Gaussian minimum shift keying (GMSK) filter for frequency modulating a carrier signal in a GMSK transmission system. The GMSK filter contains a control logic module having a shift register receiving modulation bits. The shift register has a first side for receiving logic 1 values of the modulation bits and a second side receiving logic 0 values of the modulation bits. The second side is opposite the first side, and the shift register has a shift direction switchable between a stop, a left and a right shift direction. A number of individual current sources are provided and output individual current values with the individual current sources being individually driven by the control logic module in accordance with a digital signal to be modulated. An output resistor is coupled to the individual current sources with a total current from the individual current sources being converted by the output resistor to a voltage value for controlling a voltage controlled oscillator, by which a frequency of the carrier signal is modulated.
The object is achieved by the digital GMSK filter according to the invention. The filter uses a parallel D/A converter with a current output for the D/A converter. The analog output signal in this case consists of a total current, which is obtained by additive combination of individual currents from individual current sources.
The current sources that are used for the filter according to the invention are what are referred to as differential current sources. The expression “differential current source” is in this case intended to mean that they each supply the current which is necessary to move from one step on the converter characteristic to the next step. The necessary chip surface area to provide the filter is in this case governed only by the maximum total current, and not by the number of current sources.
The individual currents from the differential current sources can be converted directly in an external resistor to the control voltage required for driving the VCO, so that, in contrast to the D/A converters known from the prior art, no output buffer is required. The current values from the differential current sources are in this case not weighted linearly, but have Gaussian weighting. Therefore, there is no need for any digital filtering.
The configuration of the shift register according to the invention (input capability on both sides and capability to shift the switch direction) results in that the individual current sources

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Digital GMSK filter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Digital GMSK filter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital GMSK filter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3335071

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.