Boots – shoes – and leggings
Patent
1995-03-30
1997-12-09
Mai, Tan V.
Boots, shoes, and leggings
G06F 1717
Patent
active
056967080
ABSTRACT:
A method for changing the frequency of a low-pass Finite Impulse Response (FIR) filter with a fixed frequency clock utilizes a decimation-by-coefficient technique. The decimation-by-coefficient method utilizes a single set of coefficients that are stored in a coefficient Read Only Memory (ROM) (64). Data is input to an elastic buffer (60) with multiplications performed by a multiplication circuit (62). To realize a low frequency filter, all coefficients are utilized in the multiplication operations with sequential multiplies. These are accumulated in register (70), this providing a high precision filter. To increase frequency by a factor of two--to decimate the coefficients by a factor of two, it is only necessary to utilize every other coefficient, such that only a single fixed clock (78) is required.
REFERENCES:
patent: 4564918 (1986-01-01), McNally et al.
patent: 4716472 (1987-12-01), McNally
patent: 4748578 (1988-05-01), Lagadec et al.
patent: 4772871 (1988-09-01), Suzuki et al.
patent: 4780892 (1988-10-01), Lagadec
patent: 4825398 (1989-04-01), Koch et al.
patent: 4943807 (1990-07-01), Early
patent: 5212659 (1993-05-01), Scott et al.
patent: 5257026 (1993-10-01), Thompson et al.
patent: 5506798 (1996-04-01), Shimada et al.
Robert Adams and Tom Kwan, "Theory and VLSI Architectures for Asynchronous Sample-Rate Converters," J. Audio Eng. Soc., vol. 41, No. 7/8, Jul./Aug.
Robert Adams and Tom Kwan, "A Stereo Asynchronous Digital Sample-Rate Converter for Digital Audio," IEEE Journal of Solid-State Circuits, vol. 29, No. 4, Apr. 1994.
"Advance Information: DSP56ADC16 16-Bit Sigma-Delta Analog-to-Digital Converter," Motorola, Inc., 1989.
M. S. Ghausi and K. R. Laker, "Modern Filter Design," by Bell Telephone Laboratories, Inc., pp. 342-357, 1981.
R. W. Adams, P. F. Ferguson, Jr., A. Fanesan, S. Vincelette, A. Volpe, and R. Libert, "Theory and Practical Implementation of a Fifth-Order Sigma-Delta A/D Converter," J. Audio Eng. Soc., vol. 39, Nos. 7-8, pp. 515-527, Jul./Aug. 1991.
S. A. Jantzi, W. M. Snelgrove, and P. F. Ferguson, Jr., "A Fourth-Order Bandpass Sigma-Delta Modulator," IEEE Journal of Solid-State Circuits, vol. 28, No. 3, pp. 282-291, Mar. 1993.
R. Gregorian and G. C. Temes, "Analog MOS Integrated Circuits for Signal Processing," A Wiley-Interscience Publication, John Wiley and Sons, pp. 265-401, 1986.
Lawrence R. Rabiner, Bernard Gold, "Theory and Application of Digital Signal Processing", pp. 328-329.
Charles D. Thompson, Salvador R. Bernadas, "A Digitally-Corrected 20b Delta-Sigma Modulator", 1994 IEEE International Solid-State Circuits Conference, pp. 194-195.
Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, "A 16-bit Oversampling A-to-D Conversion Technology Using Triple-Integration Noise Shaping", IEEE Journal of Solid-State Cirucits, vol. SC-22, Dec. 1987, pp. 921-928.
Mehdi Hatamiam and Keshab K. Parhi, "An 85-MHz Fourth-Order Programmable IIH Digital Filter Chip", IEEE Journal of Solid-State Circuits, vol. 27, No. 2, Feb. 1992, pp. 175-183.
David Vallancourt and Yannis P. Tsividis "A Fully Programmable Sampled-Data Analog CMOS Filter with Transfer-Function Coefficients Determined by Timing", IEEE Journal of Solid-State Circuits, vol. SC-22, No. 6, Dec. 1987, pp. 1022-1030.
Kin Lin and John Poulos, "Area Efficient Decimation Filter for an 18-bit Delta-Sigma Analog-to-Digital Convert", AES Feb. 1995, pp. 1-10.
Alan V. Oppenheim and Alan S. Willsky, "Signals and Systems", Analysis and Characterization of LTI Systems Using z-Transforms, Sec. 10.7, 1983.
David Vallancourt and Yannis P. Tsividis, "Timing-Controlled Fully Programmable Analog Signal Processors Using Switched Continuous-Time Filters", IEEE Transactions on Circuits and Systems, vol. 35, No. 8, Aug. 1988, pp. 947-954.
1994 Crystal Semiconductor Audio Databook, pp. 3-143.
DSP56000/DSP56001 Digital Signal Processor User's Manual, Rev. 2, pp. 11-8-11-9, 1990.
Texas Instruments TMS320C3x User's Guide, 1992, pp. 8-12-8-16.
Andreas Antoniou, "Digital Filters", Second Edition, 1993, pp. 366-381.
Crystal Semiconductor
Howison Gregory M.
Mai Tan V.
Violette J. P.
LandOfFree
Digital filter with decimated frequency response does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital filter with decimated frequency response, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital filter with decimated frequency response will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1613020