Digital electronic lock

Locks – Portable – Padlocks

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C070S278100, C070S386000

Reexamination Certificate

active

06442983

ABSTRACT:

FIELD OF INVENTION
This invention relates to the security field and in particular concerns padlocks used in a variety of settings for maintaining the contents of receptacles in a secure fashion. More particularly, the invention relates to the use of a digital programmable microprocessing interface for the purposes of opening and securing a lock device.
BACKGROUND OF INVENTION
It is commonly known that when an individual is concerned about maintaining articles in a secure environment, people routinely use a variety of locking devices to secure receptacles wherein the material to be safeguarded is retained, such as, for example, safety deposit boxes and lockers. In such settings individuals utilize padlocks of either the key or combination variety on the latches of these containers so as to maintain the contents in a secure fashion. Standard padlocks widely available today consist of three basic types: 1) A standard key lock which operates on the basis of a tumbler system and is actuated by inserting a key into a cylinder at the base of the lock which contains pins or mechanical devices which release a locking bar mechanism when the key is turned. In such padlocks, release of the locking bar mechanism when the key is turned. In such padlocks, release of the locking bar is assisted by a spring; 2) A standard combination padlock which is operated by rotating a numbered dial on the front of such lock body. Attached to the dial internally, is a series of disks which have stops and open gaps cut out such that they are aligned to all be in the same open position by rotation of the dial in both directions based upon a pre-programmed set of numbers derived from a factory which produces the lock. According to this type of lock, once the aforementioned spaces are aligned in the open position, the lock can be opened by pulling down on the lock body; and 3) A standard combination padlock which is operated by turning a series of numbered tumblers to a pre-set combination which aligns gaps in a locking bar to an open position. Once this open position is achieved, the lock is free to disengage when the lock body is pulled away from the locking bar. These types of locks have been available for a considerable period of time. However, unless the user has the key or is able to remember the factory-provided combination, it is not possible to open these locks. Further, it is not possible to change the method by which these locks may be opened. Additionally, it is possible for key tumbler locks to be “picked” open and combination dial locks are susceptible to opening if the tumbler action can be heard, typically with the assistance of an aid for amplifying hearing.
In response to the foregoing and other problems, various electronic locks and lock-boxes incorporating padlocks have been developed. One example of an electronic door lock is “Self-Contained Electromechanical Locking Device”, U.S. Pat. No. 4,901,545 to Bacon, which teaches an electromechanical lock incorporated into a doorknob for use on an original installation of a door lockset, or for retrofitting onto an existing door lockset. The lock in Bacon is characterized by a doorknob having the usual key-cylinder and tumbler mechanism. Additionally, Bacon comprises a keypad mounted on the top of the doorknob and connected to a computer controller housed within the knob. In turn, the controller is operably connected to a motor also housed within the knob. The motor moves a locking pin, which resides within an aperture adjacent the tumbler mechanism, between a locked and unlocked position. (See Item 65, FIG. 6 and Col. 5, Line 62-Col 6, Line 18). When a correct key-code is entered, the locking pin moves out of engagement with the tumbler mechanism, thereby allowing a key or a turn-key to turn in the key-hole and thus open the lock. Unfortunately, the mechanical linkage of the motor to the tumbler mechanism requires a bulky housing, which is suitable for a door lockset but unsuitable for a padlock, and the small locking pin in Bacon is unsuitable for securing a shackle in a padlock. Further, the lock in Bacon essentially has a two-stage unlocking procedure; first, the key-code must be entered, and second, the key must be turned within the lockset. This two-stage procedure saves battery life by reducing power consumption, but is thus unsuitable for a lock with a one-stage unlocking procedure.
Another example of a lock is found in “Gearshift Lock”, U.S. Pat. No. 5,561,996 to Chang, which teaches a large padlock that prevents a gearshift from moving out of the park position, thereby preventing theft of the vehicle. The lock in Chang incorporates a lock box having two parallel passages to receive each end of a U-shaped shackle. The shackle has a recess on each end for locking engagement with the box. The lock box incorporates a locking mechanism which engages the recesses when the shackle is inserted within the passages. The locking mechanism embodies a motor having a pinion gear on its output shaft. The top of the pinion gear engages an upper rack gear, while the bottom of the pinion gear engages a lower rack gear. Each rack gear is “L” shaped, having a bar mounted perpendicularly on their ends. The rack gears are biased away from each other by a pair of springs, which drive the bars into the recesses. A mechanical key is used to activate a switch to drive the motor in a reverse (unlocking direction) which compresses the springs and urges the rack gears together. The motor is powered by the vehicle battery. It will be apparent to those of skill in the art that the rack gears and springs must be of a sufficient size to resist attempts to break the lock and, accordingly, a relatively large motor and power supply is required to generate sufficient torque to compress the springs and move the rack gears.
When driven in the reverse direction, the upper and lower rack gears are driven inwards, thus disengaging the bars from the recesses, thereby releasing the shackle from the lock box. While the lock in Chang is suitable for a large gearshift lock having an external power source, it is unsuitable for a small padlock requiring a self-contained power supply. Further, the lock in Chang requires the use of a key, and cannot be operated by simply entering a combination or key-code.
“Electronic Access Card Having Key Pads and Coils and Combination Using the Same”, U.S. Pat. No. 4,864,115 to Imran and Clark, teaches an electronic access card that can be used to operate real estate agent lock boxes which retain a door key. Such boxes are typically combined with a padlock for securing the box to a doorknob, and are used to give several real estate agents access to a single door key of a dwelling, by affixing the lock box to an outside door of the dwelling. The access card contains a power supply and a plurality of programming features to allow the card to open multiple lock boxes, and to record and limit access time to the lock boxes.
“Electronic Lock Box, Access Card, System and Method”, U.S. Pat. No. 4,851,652 to Imran, teaches a type of real estate agent lock box for retaining a door key combined with a padlock for securing the box to a doorknob. Imran includes an external electronic key, which houses a power supply for operating both the lock box and the padlock. Electromagnetic solenoids are used to move leaf springs to open the lock box and the padlock. It will be apparent to those of skill in the art that springs of sufficient size must be used in order to keep the box secured.
“Improved Electronic Security System”, WO 93/03246 to Babler, teaches an electronic lock box for storing a mechanical key combined with a padlock for affixing the box to a doorknob. The lock box has a nest on its exterior to receive an electronic key. The lock box further includes an interior computer, an internal locking mechanism for the lock box, and an internal locking mechanism for the padlock. The padlock locking mechanism within the lock box includes a solenoid having a pair of plungers which are spring biased in an outward position to engage the shackle, and can be retracted b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Digital electronic lock does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Digital electronic lock, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital electronic lock will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2820512

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.