Digital control channels having logical channels for...

Multiplex communications – Communication over free space – Combining or distributing information via time channels

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S466000

Reexamination Certificate

active

06212176

ABSTRACT:

BACKGROUND
Applicants' invention relates generally to radiocommunication systems that use digital control channels in a multiple access scheme and more particularly to cellular TDMA radiotelephone systems having digital control channels.
The growth of commercial radiocommunications and, in particular, the explosive growth of cellular radiotelephone systems have compelled system designers to search for ways to increase system capacity without reducing communication quality beyond consumer tolerance thresholds. One way to increase capacity is to use digital communication and multiple access techniques such as TDMA, in which several users are assigned respective time slots on a single radio carrier frequency.
In North America, these features are currently provided by a digital cellular radiotelephone system called the digital advanced mobile phone service (D-AMPS), some of the characteristics of which are specified in the interim standard IS-54B, “Dual-Mode Mobile Station-Base Station Compatibility Standard”, published by the Electronic Industries Association and Telecommunications Industry Association (EIA/TIA). Because of a large existing consumer base of equipment operating only in the analog domain with frequency-division multiple access (FDMA), IS-54B is a dual-mode (analog and digital) standard, providing for analog compatibility in tandem with digital communication capability. For example, the IS-54B standard provides for both FDMA analog voice channels (AVC) and TDMA digital traffic channels (DTC), and the system operator can dynamically replace one type with the other to accommodate fluctuating traffic patterns among analog and digital users. The AVCs and DTCs are implemented by frequency modulating radio carrier signals, which have frequencies near 800 megahertz (MHz) such that each radio channel has a spectral width of 30 kilohertz (KHz).
In a TDMA cellular radiotelephone system, each radio channel is divided into a series of time slots, each of which contains a burst of information from a data source, e.g., a digitally encoded portion of a voice conversation. The time slots are grouped into successive TDMA frames having a predetermined duration. The number of time slots in each TDMA frame is related to the number of different users that can simultaneously share the radio channel. If each slot in a TDMA frame is assigned to a different user, the duration of a TDMA frame is the minimum amount of time between successive time slots assigned to the same user.
The successive time slots assigned to the same user, which are usually not consecutive time slots on the radio carrier, constitute the user's digital traffic channel, which may be considered a logical channel assigned to the user. As described in more detail below, digital control channels (DCCs) can also be provided for communicating control signals, and such a DCC is a logical channel formed by a succession of usually non-consecutive time slots on the radio carrier.
According to IS-54B, each TDMA frame consists of six consecutive time slots and has a duration of 40 milliseconds (msec). Thus, each radio channel can carry from three to six DTCs (e.g., three to six telephone conversations), depending on the source rates of the speech coder/decoders (codecs) used to digitally encode the conversations. Such speech codecs can operate at either full-rate or half-rate, with full-rate codecs being expected to be used until half-rate codecs that produce acceptable speech quality are developed. A full-rate DTC requires twice as many time slots in a given time period as a half-rate DTC, and in IS-54B, each radio channel can carry up to three full-rate DTCs or up to six half-rate DTCs. Each full-rate DTC uses two slots of each TDMA frame, i.e., the first and fourth, second and fifth, or third and sixth of a TDMA frame's six slots. Each half-rate DTC uses one time slot of each TDMA frame. During each DTC time slot, 324 bits are transmitted, of which the major portion, 260 bits, is due to the speech output of the codec, including bits due to error correction coding of the speech output, and the remaining bits are used for guard times and overhead signalling for purposes such as synchronization.
It can be seen that the TDMA cellular system operates in a buffer-and-burst, or discontinuous-transmission, mode: each mobile station transmits (and receives) only during its assigned time slots. At full rate, for example, a mobile station might transmit during slot 1, receive during slot 2, idle during slot 3, transmit during slot 4, receive during slot 5, and idle during slot 6, and then repeat the cycle during succeeding TDMA frames. Therefore, the mobile station, which may be battery-powered, can be switched off, or sleep, to save power during the time slots when it is neither transmitting nor receiving. In the IS-54B system in which the mobile does not transmit and receive simultaneously, a mobile can sleep for periods of at most about 27 msec (four slots) for a half-rate DTC and about 7 msec (one slot) for a full-rate DTC.
In addition to voice or traffic channels, cellular radiocommunication systems also provide paging/access, or control, channels for carrying call-setup messages between base stations and mobile stations. According to IS-54B, for example, there are twenty-one dedicated analog control channels (ACCs), which have predetermined fixed frequencies for transmission and reception located near 800 MHz. Since these ACCs are always found at the same frequencies, they can be readily located and monitored by the mobile stations.
For example, when in an idle state (i.e., switched on but not making or receiving a call), a mobile station in an IS-54B system tunes to and then regularly monitors the strongest control channel (generally, the control channel of the cell in which the mobile station is located at that moment) and may receive or initiate a call through the corresponding base station. When moving between cells while in the idle state, the mobile station will eventually “lose” radio connection on the control channel of the “old” cell and tune to the control channel of the “new” cell. The initial tuning and subsequent re-tuning to control channels are both accomplished automatically by scanning all the available control channels at their known frequencies to find the “best” control channel. When a control channel with good reception quality is found, the mobile station remains tuned to this channel until the quality deteriorates again. In this way, mobile stations stay “in touch” with the system. The ACCs specified in IS-54B require the mobile stations to remain continuously “awake” (or at least for a significant part of the time, e.g. 50%) in the idle state, at least to the extent that they must keep their receivers switched on.
While in the idle state, a mobile station must monitor the control channel for paging messages addressed to it. For example, when an ordinary telephone (land-line) subscriber calls a mobile subscriber, the call is directed from the public switched telephone network (PSTN) to a mobile switching center (MSC) that analyzes the dialed number. If the dialed number is validated, the MSC requests some or all of a number of radio base stations to page the called mobile station by transmitting over their respective control channels paging messages that contain the mobile identification number (MIN) of the called mobile station. Each idle mobile station receiving a paging message compares the received MIN with its own stored MIN. The mobile station with the matching stored MIN transmits a page response over the particular control channel to the base station, which forwards the page response to the MSC.
Upon receiving the page response, the MSC selects an AVC or a DTC available to the base station that received the page response, switches on a corresponding radio transceiver in that base station, and causes that base station to send a message via the control channel to the called mobile station that instructs the called mobile station to tune to the selected voice or traffic channel. A through-c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Digital control channels having logical channels for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Digital control channels having logical channels for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital control channels having logical channels for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2454754

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.