Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Mechanical measurement system
Reexamination Certificate
2002-06-07
2004-12-28
Shah, Kamini (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Mechanical measurement system
C264S401000
Reexamination Certificate
active
06836736
ABSTRACT:
TECHNICAL FIELD
The present invention is generally related to haptic interface devices and, more particularly, is related to a system and method for controlling the shape of and/or for receiving information pertaining to a surface and/or a volume of a digital clay device.
BACKGROUND OF THE INVENTION
Significant prior research has been performed in the area of haptic interfaces. Several haptic-based interaction systems have been developed and used for a variety of applications, including molecular dynamics simulation and steering, manipulation of nano-materials, surgical training, virtual prototyping, and digital sculpting.
Early haptic interface systems utilized a robot arm, both as a six degree-of-freedom input device as well as a force feedback output device, providing the user with a tactile perception of molecular forces and torques. Since then, alternative force-feedback devices with multiple degrees of freedom have been proposed. These approaches provide an intuitive interface for the manipulation of rigid bodies subjected to inertial, contact, or other forces. They are, however, significantly less convenient for sensing and altering the shape of curves and surfaces.
These haptic devices and techniques focus on force feedback, which assists the user in gauging the effort required to be exerted on the surface in order to achieve the desired shape alteration. This approach may also be used to provide information about the stiffness or density of the surface. In addition, such haptic approaches have been applied to the exploration of a field in a volume or even of fluid dynamics. However, these approaches do not provide sufficient tactile feedback regarding the shape of the surface.
Running the tip of a computer cursor over the virtual surface has been suggested as a means for “haptic surface rendering” and have been extended to real-time detection of contacts when manipulating an object with six degrees of freedom. The contact forces may be computed using the concept of “virtual proxy”.
Such approaches, based on exploration of a surface with the tip or side of a stylus, produce forces that would result from contact, palpation, or stroking actions. These forces may reveal surface anomalies or attract the attention of the designer to small, high-spatial-frequency features that may have been more difficult to detect visually. However, stylus-based approaches are far from exploiting the natural ability of a designer to feel a surface by touching it with a wider area of the hand.
Interfaces involving touch have used gloves, manipulators controlling a stylus held by the hand, and arrays of actuators to depict a surface. They attempt to supply sensations received through our various touch and kinesthetic receptors, often broken into several regimes. Vector macro forces are at the gross end of that scale and are readily displayed by manipulator-like haptic devices. Vibrations are by nature a scalar field and may be distributed widely over the surface of the skin. The amplitude and frequency are noticeable but not the direction. The most difficult to display are small shapes, for which arrays of stimulators are necessary. To achieve both kinesthetic and tactile sensations simultaneously the combination of a haptic manipulator and a tactile array is currently required.
A stylus grasped by a user is one way to explore a haptic environment in a pointwise fashion. If the stylus is attached to a manipulator, interaction forces can be generated which represent interaction of the stylus with a virtual world. Available pointwise haptic displays allow forces and moments to be fed back to the user in two to six degrees of freedom and are well suited to provide the kinesthetic portion of a haptic experience. Haptic mice enable the user to feel the transition of the cursor between different regions of the screen. These haptic manipulators open new possibilities of interfacing, but are comparable to displaying a picture to a viewer one pixel at a time. Haptic manipulators must provide spatial relationships only through temporal sequencing, greatly compromising their efficiency. Sample rates of 1000 Hz are typical with forces controlled at 30 Hz or more for adequate display of features such as a breast tumor.
It is necessary to provide a totally synthetic view of the hand in the environment if haptics are coordinated with vision. Viewing the stylus and its device provides no supporting optical illusion. Another disadvantage of the numerous devices is that the ratio of the smallest to the largest displayable force is difficult to expand. When the hand should be moving unimpeded, it still must exert a force to move the device forward. This problem has been only partially overcome by utilizing a servomechanism based on the position of the hand to avoid contact (i.e., achieve 0 force) except when contact should be displayed.
SUMMARY OF THE INVENTION
The present invention provides a system and method for controlling the surface and/or volume of a digital clay device. Briefly described, in architecture, one embodiment is a method comprising the following steps: determining a desired position of a skeleton structure portion residing in the digital clay device, determining a volumetric change of a fluid residing in a bladder, the determined volumetric change corresponding to the determined desired position of the skeleton structure portion, opening a micro-electro mechanical systems (MEMS) valve so that the fluid flows through the MEMS valve thereby causing the determined volumetric change of the fluid residing in the bladder, and adjusting a position of the skeleton structure portion corresponding to the desired position of the skeleton structure portion, the position adjustment caused by a force generated by the bladder on the skeleton structure portion when the volume of the bladder changes in response to the determined volumetric change of the fluid residing in the bladder.
Another embodiment of the invention is a method comprising the following steps: determining an initial position of a skeleton structure portion residing in the digital clay device, sensing a pressure change in a bladder, the pressure change corresponding to an external force applied to an exterior portion of the digital clay device, opening a micro-electro mechanical systems (MEMS) valve in response to the sensed pressure change such that fluid residing in the bladder exits the bladder, sensing flow of the fluid through the MEMS valve, closing the MEMS valve when the sensed pressure is reduced to at least a predefined value, the reduced pressure resulting from the exit of fluid from the bladder, such that flow of the fluid through the MEMS valve stops, determining a volumetric change in the fluid from the sensed flow after the MEMS valve is closed, and determining a change in the position of the skeleton structure portion based upon the determined volumetric change.
Another embodiment of the invention comprises a processor system and a plurality of cells, each one of the plurality of cells further comprising at least one bladder, the bladder configured to hold a bladder fluid, at least one micro-electro mechanical systems (MEMS) valve, the valve controlled by the processor system, and at least one sensor coupled to the MEMS valve, the sensor configured to sense flow of a fluid through the MEMS valve such that a volumetric change in the bladder fluid is determinable by the processor system.
Other systems, methods, features, and advantages of the present invention will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.
REFERENCES:
patent: 4575330 (1986-03-01), Hull
patent: 4929402 (1990-05-01), Hull
patent: 5123734 (1992-06-01), Spence et al.
patent: 5133987 (1992-07-01), Spence et al.
patent: 5174931 (1992-12-01), Almquist et al.
patent: 5344298 (1994-0
Allen Mark
Book Wayne J.
Ebert-Uphoff Imme
Glezer Ari
Rosen David W.
Georgia Tech Research Corporation
Shah Kamini
Thomas Kayden Horstemeyer & Risley, L.L.P.
LandOfFree
Digital clay apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital clay apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital clay apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3293078