Television – Camera – system and detail – Combined image signal generator and general image signal...
Reexamination Certificate
2000-01-21
2004-11-30
Vu, Ngoc-Yen (Department: 2612)
Television
Camera, system and detail
Combined image signal generator and general image signal...
C375S240180, C375S240190
Reexamination Certificate
active
06825876
ABSTRACT:
COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
The present invention relates to the field of digital cameras and digital image processing and, more particularly, to designs and techniques for reducing processing requirements and therefore size of digital cameras.
Today, digital imaging, particularly in the form of digital cameras, is a prevalent reality that affords a new way to capture photos using a solid-state image sensor instead of traditional film. A digital camera functions by recording incoming light on some sort of sensing mechanisms and then processes that information (basically, through analog-to-digital conversion) to create a memory image of the target picture. A digital camera's biggest advantage is that it creates images digitally thus making it easy to transfer images between all kinds of devices and applications. For instance, one can easily insert digital images into word processing documents, send them by e-mail to friends, or post them on a Web site where anyone in the world can see them. Additionally, one can use photo-editing software to manipulate digital images to improve or alter them. For example, one can crop them, remove red-eye, change colors or contrast, and even add and delete elements. Digital cameras also provide immediate access to one's images, thus avoiding the hassle and delay of film processing. All told, digital photography is becoming increasingly popular because of the flexibility it gives the user when he or she wants to use or distribute an image.
The defining difference between digital cameras and those of the film variety is the medium used to record the image. While a conventional camera uses film, digital cameras use an array of digital image sensors. When the shutter opens, rather than exposing film, the digital camera collects light on an image sensor, a solid state electronic device. The image sensor contains a grid of tiny photosites that convert light shining on them to electrical charges. The image sensor may be of the charged-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) varieties. Most digital cameras employ charge-coupled device (CCD) image sensors, but newer cameras are using image sensors of the complimentary metal-oxide semiconductor (CMOS) variety. Also referred to by the acronym CIS (for CMOS image sensors), this newer type of sensor is less expensive than its CCD counterpart and requires less power.
During camera operation, an image is focused through the camera lens so that it will fall on the image sensor. Depending on a given image, varying amounts of light hit each photosite, resulting in varying amounts of electrical charge at the photosites. These charges can then be measured and converted into digital information that indicates how much light hit each site which, in turn, can be used to recreate the image. When the exposure is completed, the sensor is much like a checkerboard, with different numbers of checkers (electrons) piled on each square (photosite). When the image is read off of the sensor, the stored electrons are converted to a series of analog charges which are then converted to digital values by an Analog-to-Digital (A to D) converter, which indicates how much light hit each site which, in turn, can be used to recreate the image.
Early on during the digital imaging process, the picture information is not in color as the image sensors basically only capture brightness. They can only record gray-scale information—that is, a series of increasingly darker tones ranging from pure white to pure black. Thus, the digital camera must infer certain information about the picture in order to derive the color of the image. To infer color from this black & white or grayscale image, digital cameras use color filters to separate out the different color components of the light reflected by an object. Popular color filter combinations include, for instance, a red, green, and blue (RGB) filter set and a cyan, magenta, and yellow (CMYK) filter set. Filters can be placed over individual photosites so each can capture only one of the filtered colors. For an RGB implementation, for example, one-third of the photo is captured in red light, one-third in blue, and one-third in green. In such an implementation, each pixel on the image sensor has red, green, and blue filters intermingled across the photosites in patterns designed to yield sharper images and truer colors. The patterns vary from company to company but one of the most popular is the Bayer mosaic pattern, which uses a square for four cells that include two green on one diagonal, with one red and one blue on the opposite diagonal.
Because of the color filter pattern, only one color luminosity value is captured per sensor pixel. To create a full-color image, interpolation is used. This form of interpolation uses the colors of neighboring pixels to calculate the two colors a photosite did not record. By combining these two interpolated colors with the color measured by the site directly, the original color of every pixel is calculated. This step is compute-intensive since comparisons with as many as eight neighboring pixels is required to perform this process properly. It also results in increased data per image so files get larger.
In order to generate an image of quality that is roughly comparable to a conventional photograph, a substantial amount of information must be capture and processed. For example, a low-resolution 640×480 image has 307,200 pixels. If each pixel uses 24 bits (3 bytes) for true color, a single image takes up about a megabyte of storage space. As the resolution increases, so does the image's file size. At a resolution of 1024×768, each 24-bit picture takes up 2.5 megabytes. Because of the large size of this information, digital cameras usually do not store a picture in its raw digital format but, instead, apply compression technique to the image so that it can be stored in a standard compressed image format, such as JPEG (Joint Photographic Experts Group). Compressing images allows the user to save more images on the camera's “digital film,” such as flash memory (available in a variety of specific formats) or other facsimile of film. It also allows the user to download and display those images more quickly.
During compression, data that is duplicated or which has no value is eliminated or saved in a shorter form, greatly reducing a file's size. When the image is then edited or displayed, the compression process is reversed. In digital photography, two forms of compression are used: lossless and lossy. In lossless compression (also called reversible compression), reversing the compression process produces an image having a quality that matches the original source. Although lossless compression sounds ideal, it doesn't provide much compression. Generally, compressed files are still a third the size of the original file, not small enough to make much difference in most situations. For this reason, lossless compression is used mainly where detail is extremely important as in x-rays and satellite imagery. A leading lossless compression scheme is LZW (Lempel-Ziv-Welch). This is used in GIF and TIFF files and achieves compression ratios of 50 to 90%.
Although it is possible to compress images without losing some quality, it's not practical in many cases. Therefore, all popular digital cameras use a lossy compression. Although lossy compression does not uncompress images to the same quality as the original source, the image remains visually lossless and appears normal. In many situations, such as posting images on the Web, the image degradation is not obvious. The trick is to remove data that isn't obvious to the vie
Bodnar Eric O.
Easwar Venkat V.
Kahn Philippe R.
Kahn Sonia Lee
Kirani Shekhar
Blakely , Sokoloff, Taylor & Zafman LLP
LightSurf Technologies, Inc.
Nguyen Luong T.
Szepesi Judith A.
Vu Ngoc-Yen
LandOfFree
Digital camera device with methodology for efficient color... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital camera device with methodology for efficient color..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital camera device with methodology for efficient color... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3327074