Diffractive surfaces with color shifting backgrounds

Stock material or miscellaneous articles – Structurally defined web or sheet – Including variation in thickness

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S167000, C359S002000, C359S359000, C359S360000, C359S580000, C359S584000, C359S585000

Reexamination Certificate

active

06761959

ABSTRACT:

BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention is related generally to thin film optical coatings for use in producing security articles. More specifically, the present invention is related to the production of diffractive surfaces such as holograms or gratings having color shifting or optically variable backgrounds which can be used as security articles in a variety of applications.
2. The Relevant Technology
Color shifting pigments and colorants have been used in numerous applications, ranging from automobile paints to anti-counterfeiting inks for security documents and currency. Such pigments and colorants exhibit the property of changing color upon variation of the angle of incident light, or as the viewing angle of the observer is shifted. The primary method used to achieve such color shifting colorants is to disperse small flakes, which are typically composed of multiple layers of thin films having particular optical characteristics, throughout a medium such as paint or ink that may then be subsequently applied to the surface of an object.
Diffraction patterns and embossments, and the related field of holographs, have begun to find wide-ranging practical applications due to their aesthetic and utilitarian visual effects. One very desirable decorative effect is the iridescent visual effect created by a diffraction grating. This striking visual effect occurs when ambient light is diffracted into its color components by reflection from the diffraction grating. In general, diffraction gratings are essentially repetitive structures made of lines or grooves in a material to form a peak and trough structure. Desired optical effects within the visible spectrum occur when diffraction gratings have regularly spaced grooves in the range of hundreds to thousands of lines per millimeter on a reflective surface.
Diffraction grating technology has been employed in the formation of two-dimensional holographic patterns which create the illusion of a three-dimensional image to an observer. Furthermore, the use of holographic images on various objects to discourage counterfeiting has found widespread application.
There currently exist several applications for surfaces embossed with holographic patterns which range from decorative items, such as gift wrap, to security documents, such as bank notes and credit cards. Two-dimensional holograms typically utilize diffraction patterns which have been formed on a plastic surface. In some cases, a holographic image which has been embossed on such a surface can be visible without further processing; however, it is generally necessary, in order to achieve maximum optical effects, to place a reflective layer, typically a thin metal layer such as aluminum, onto the embossed surface. The reflective layer substantially increases the visibility of the diffraction pattern embossment.
Unfortunately, there exists a substantial incentive for counterfeiters to reproduce the holograms which are frequently used in credit cards, bank notes, and the like. One of the methods used to reproduce holograms is to scan a laser beam across the embossed surface and optically record the reflected beam on a layer of a material such as a photopolymerizable polymer. The original pattern can subsequently be reproduced as a counterfeit. Another method is to remove the protective covering material from the embossed metal surface by ion etching, and then when the embossed metal surface is exposed, a layer of metal such as silver (or any other easily releasable layer) can be deposited. This is followed by deposition of a layer of nickel, which is subsequently released to form a counterfeiting embossing shim.
Due to the level of sophistication of counterfeiting methods, it has become necessary to develop more advanced security measures. One approach, as disclosed in U.S. Pat. Nos. 5,629,068 and 5,549,774 to Miekka et al., is the application of inks, such as metallic flake inks, metallic effect inks, or inks with pigments formed of optical stacks, upon the embossed surface in lieu of a thin metal layer. In another approach, disclosed in U.S. Pat. Nos. 5,624,076 and 5,672,410 also to Miekka et al., embossed metal particles or optical stack flakes are used to produce a holographic image pattern.
Another problem with the holographic images as described above is that they require direct specular illumination in order to be visualized. This means that for best viewing results, the illuminating light must be incident at the same angle as the viewing angle. Therefore, diffuse light sources, such as ordinary room lights or viewing by an overcast sky, when used to illuminate the holographic image, do not reveal much of the visual information contained in the hologram, and what is typically seen is only a silver colored reflection from the embossed surface.
It would therefore be of substantial advantage to develop improved security products to provide enhanced viewing qualities in ordinary room light and which are usable in various security applications to make counterfeiting more difficult.
SUMMARY AND OBJECTS OF THE INVENTION
It is a primary object of the invention to provide a security article have color shifting properties which increases the difficulty of counterfeiting in a variety of applications.
Another object of the invention to provide a security article with a distinctive pattern that is readily observable over a wide range of viewing angles in diffuse lighting conditions.
Another object of the invention is to provide a security article with a holographic pattern that has enhanced visibility and contrast to provide for viewing under diffuse lighting conditions without the need for direct specular light.
Another object of the invention to provide a security article that can be manufactured to at low cost compared to prior security products.
To achieve the forgoing objects and in accordance with the invention as embodied and broadly described herein, a security article is provided which includes a light transmissive substrate having a first surface and an opposing second surface, with the first surface having an optical interference pattern such as a diffraction grating pattern or a holographic image pattern. A color shifting optical coating is formed on the substrate, with the optical coating providing an observable color shift as the angle of incident light or viewing angle changes. In one embodiment, the color shifting optical coating is formed on the second surface of the substrate opposite from the optical interference pattern, and includes an absorber layer formed adjacent to the substrate, a dielectric layer formed on the absorber layer, and a reflector layer formed on the dielectric layer. Alternatively, this multilayer optical coating can be formed on the same side of the substrate as the interference patter.
In another embodiment, the color shifting optical coating is applied to the substrate in the form of a paint or ink which includes a polymeric medium and a plurality of color shifting multilayer optical interference flakes dispersed in the polymeric medium. In other embodiments, the color shifting optical coating is coextruded with a light transmissive embossed substrate to form adjacent layers or is dispersed in the form of interference flakes in the substrate material prior to forming the substrate.
The security article of the invention can be used in a variety of applications to provide for enhanced security measures such as anticounterfeiting. The security article can be utilized in the form of a label, a tag, a ribbon, a security thread, and the like, for application in a variety of objects such as security documents, monetary currency, credit cards, merchandise, etc.
These and other aspects and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.


REFERENCES:
patent: 3011383 (1961-12-01), Sylvester et al.
patent: 4066280 (1978-01-01), LaCapria
patent: 4126373 (1978-11-01), Moraw
patent: 415

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diffractive surfaces with color shifting backgrounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diffractive surfaces with color shifting backgrounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diffractive surfaces with color shifting backgrounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185967

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.