Diffractive and retroreflective textile fabrics, methods of...

Stock material or miscellaneous articles – Structurally defined web or sheet – Continuous and nonuniform or irregular surface on layer or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S143000, C428S144000, C428S147000, C359S515000, C359S534000, C359S536000, C442S002000, C442S221000, C442S370000, C442S417000

Reexamination Certificate

active

06764744

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention generally relates to composite fabrics having unique aesthetic and physical features, and methods for their manufacture. More specifically, the invention relates to fabric constructions incorporating a layer of diffractive or retroreflective material behind a layer of textile material, to provide unique visual appearances in durable fabric constructions. Methods for making such fabric constructions and articles illustrating exemplary uses of the fabric constructions are also described.
2. Description of the Prior Art
Fabric manufacturers continually strive to develop new fabric constructions having unique visual characteristics, in order to satisfy consumer demand for variety in the appearance of the items they purchase. Furthermore, manufacturers are constantly attempting to provide fabrics with enhanced performance characteristics, as well as to minimize expenses associated with the use and conversion of the materials that they produce. With that in mind, many manufacturers have attempted to incorporate metallic elements, glitter, and other types of reflective materials into their fabrics in order to provide the materials with a shiny visual appearance, and reflective and/or retroreflective capabilities. In some cases, the incorporation of such elements is done for aesthetic reasons alone, while in others the elements are required to provide the fabrics with specific functional characteristics. For example, such materials are used in the production of items of reflective apparel for wear by nighttime joggers, in order that they will be more easily observed by the drivers of oncoming vehicles.
One method currently used for including colorful, shiny and/or reflective particulate to textile fabrics is to apply the particulate to the face of the fabric, generally by using a binder resin for adhesion. While fabrics made by this method are relatively simple to produce, they have several distinct disadvantages. For one, both the binder resin and the particulate adversely affect the hand of the fabric, rendering such fabrics unacceptable for some end uses. In addition, the particulate is susceptible to being abraded off, which reduces the effective life of the fabric and can be problematic, since the particulate matter is then undesirably transferred to other articles. Furthermore, the size of the particles which can be used to manufacture such fabrics is limited, as large particles are particularly prone to rubbing off and they adversely affect the hand to a greater degree then smaller particles. The applications for such materials can also be limited, particularly due to the difficulties with molding such materials. Not only does the binder have a tendency to melt during molding operations, but the particulate and binder tend to come off of the fabric during the molding process.
Another method for incorporating reflective materials into a fabric is to laminate a shiny material to the outer surface of a piece of fabric. For example, U.S. Pat. No. 5,593,765 to Sharpe describes a flexible laminate having an outer visible layer providing a holographic effect. The laminate includes a layer of metal foil bearing a holographic image, a layer of flexible fabric, and an adhesive layer between the fabric and the foil. The adhesive layer includes at least one plastics material, and the laminate is intended to behave essentially as the flexible fabric so that clothing can be manufactured from the fabric. However, because the holographic foil is unprotected in this construction, it can be easily damaged during use of the article which it is used to construct.
Another method for incorporating reflective elements into fabrics involves incorporating reflective yarns into the fabric structure itself. Some prior fabrics utilize reflective filaments which are woven or otherwise incorporated with other yarns to form a part of the fabric structure itself. For example, U.S. Pat. No. 5,224,439 to O'Connell describes a reflective arrow mount for securement to an automobile at a traffic or emergency scene. The fabric forming the arrow includes a plurality of light reflective filaments running along at least some of its edge portions, with the filaments being selected to present a highly illuminated configuration of the arrow when lit up by the headlights of an oncoming motor vehicle at night. It is noted, however, that the reflective filaments do not produce any measurable effect during daylight.
Similarly, U.S. Pat. No. 5,804,275 to Tsunefuji describes products made from flat threads in which triangular, pyramid-like or otherwise shaped micro-prisms are formed. The prisms are shaped such that incident light from a light source is reflected three times at the surfaces of each of the micro-prisms to direct the reflected light back in a direction opposite to the direction of incidence. While both the O'Connell and Tsunefuji patents describe materials which can reflect light at night, they are each designed to appear as a normal non-reflective fabric during the daylight. Furthermore, the appearance of the light reflected would be the same as the color of the light which it receives.
U.S. Pat. No. 4,187,332 to Fouche, Jr. describes a process for producing wash resistant light-reflective fabrics for use in garments and wearing apparel to enhance nighttime visibility without significantly detracting from their daytime visual appearance. The process involves applying to a surface of a textile fabric constructed from differentially dyed or dyeable yarns or fibers a liquid paste composition containing a uniform dispersion of binder-coated, reflex-reflective, magnetically orientable particles suspended therein. A magnetic force field is applied to the fabric during its production so that the particles are oriented in the paste composition with their light reflecting surfaces disposed outwardly. Like the O'Connell and Tsunefuji patents described above, fabrics made according to the Fouche, Jr. patent are designed to appear to be non-reflective in the daylight, and the reflected light has the same appearance as what is received.
U.S. Pat. No. 5,882,770 to Makansi describes fabrics having rainbow and hologram images. A fibrous sheet is provided with an outer surface having fibrous elements which are embossed with a pattern of fine grooves that are substantially aligned from fibrous element to fibrous element. The pattern of fine grooves is embossed directly on the surface of the fibrous sheet and produces rainbow and/or hologram images on exposure to light. The fabric is designed to be free from plastic or metal foils.
Heretofore, none of the prior art methods for providing such reflective or retroreflective fabrics has achieved a combination of good hand and durability while providing desirable levels of light reflection. Further, a need exists for a fabric having desirable reflective characteristics and which can be readily and efficiently molded into three-dimensional shapes.
SUMMARY
The instant invention overcomes the deficiencies of the prior art by providing fabric constructions which have superior durability and which provide a unique and aesthetically pleasing appearance. In addition, the fabrics of the instant invention can be manufactured to provide retroreflection and diffraction capabilities that will render items made from or containing the fabrics extremely conspicuous to observers. The fabrics can thus be utilized to enhance the visibility of certain articles, such as for automobile safety equipment and the like. Furthermore, the fabrics of the instant invention can be readily and efficiently manufactured, and can be used in the construction of a wide variety of end products.
The invention achieves these advantages by way of a composite fabric having a layer of textile fabric which forms the visual surface of the fabric, and a layer of diffractive or retroreflective material positioned and secured beneath the textile fabric layer. For purposes of this patent disclosure, the terms “outer” and “visual” surface of the fabri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diffractive and retroreflective textile fabrics, methods of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diffractive and retroreflective textile fabrics, methods of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diffractive and retroreflective textile fabrics, methods of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196730

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.