Optical waveguides – With optical coupler – Particular coupling structure
Reexamination Certificate
1999-11-03
2002-05-21
Sanghavi, Hemang (Department: 2874)
Optical waveguides
With optical coupler
Particular coupling structure
C385S012000, C385S030000, C385S040000, C385S129000, C385S132000
Reexamination Certificate
active
06393185
ABSTRACT:
TECHNICAL FIELD
This invention relates to laser devices that produce optical energy of tightly controlled optical frequency, particularly for use in telecommunications applications. More particularly, the invention relates to devices that produce a specified optical frequency independent of thermal variations, while possessing the ability to be tuned or switched among alternative optical frequencies by thermal, electric field, or other control means without modifying the specified frequencies.
BACKGROUND ART
This invention relates to laser devices that produce optical energy of tightly controlled optical frequency, particularly for use in telecommunications applications.
More particularly, the invention relates to devices that produce a specified optical frequency independent of thermal variations, while possessing the ability to be tuned or switched among alternative optical frequencies by thermal, electric field, or other control means without modifying the specified frequencies.
The growth of demand for subscriber bandwidth has led to great pressure to expand the capacity of the telecommunications networks. Dense wavelength division multiplexing (DWDM) allows high bandwidth use of existing fiber, but low cost components are required to enable provision of high bandwidth to a broad range of customers. Key components include the source, the detector, and routing components, but these components should preferably be addressable to any of the frequency channels. These channels are currently defined by the ITU as &ngr;
n
=&ngr;
0
±n d&ngr;, where &ngr;
0
is the central optical frequency 193.1 THz and d&ngr; is the specified frequency channel spacing that may equal a multiple of 100 GHz or 50 GHz. Systems have also been demonstrated based on other fixed spacings, and based on nonuniform frequency spacings.
Semiconductor lasers with built-in gratings such as DFB and DBR lasers are currently used to produce the frequency-specific lasers needed to transmit over optical fibers. However, current fabrication techniques do not allow high yield production of a given frequency channel because of index of refraction variations in the InP-based materials. Because silica, polymer, and other optical materials offer greater stability of index of refraction, many types of hybrid lasers have been tested in which a semiconductor gain medium is combined with a grating fabricated in another material. Single frequency hybrid waveguide lasers have been demonstrated with semiconductor waveguide amplifiers to obtain the benefits of frequency selectivity and tunability. See for example * J. M. Hammer et al., Appl. Phys. Lett. 47 183, (1985), who used a grating in an external planar waveguide, by * E. Brinkmeyer et al., Elect. Lett 22 134 (1986) and * E. I. Gordon, U.S. Pat. No. 4,786,132, Nov. 22, 1988 and * R. C. Alferness, U.S. Pat. No. 4,955,028, Sep. 4, 1990, who used a grating in a fiber waveguide, by * D. M. Bird et al., Elect. Lett. 27 1116 (1991) who used a UV-induced grating, by * W. Morey, U.S. Pat. No. 5,042,898, Aug. 27, 1991 who used a fiber grating with thermally compensated package, by * P. A. Morton et al., Appl. Phys. Lett. 64 2634 (1994) who used a chirped grating, by * D. A. G. Deacon, U.S. Pat. No. 5,504,772, Apr. 2, 1996, who used multiple gratings with optical switches, by * J. M. Chwalek, U.S. Pat. No. 5,418,802, May 23, 1995, who used an electro-optic waveguide grating, by * R. J. Campbell et al., Elect. Lett. 32 119 (1996) who used an angled semiconductor diode waveguide, by * T. Tanaka et al, Elect. Lett. 32 1202 (1996) who used flip-chip bonding, and by * J-M. Verdiell, U.S. Pat. No. 5,870,417, Feb. 9, 1999, who adjust for single mode operation. Single frequency hybrid waveguide lasers have also been demonstrated with fiber waveguide amplifiers. See * D. Huber, U.S. Pat. No. 5,134,620, Jul. 28, 1992 and * F. Leonberger, U.S. Pat. No. 5,317,576, May 31, 1994.
Many robust thermo-optic materials are available today including glass and polymer materials systems that can also be used in fabricating waveguide optical components. See * M. Haruna et al., IEE Proceedings 131H 322 (1984), and * N. B. J. Diemeer, et al., J. Light. Technology, 7, 449-453 (1989). Recently, thermally tunable gratings have been fabricated in polymer waveguides and resonators. See * L. Eldada et al., Proceedings of the Optical Fiber communications Conference, Optical Society of America, p. 98 (1999), and * N. Bouadma, U.S. Pat. No. 5,732,102, Mar. 24, 1998.
Thermal compensation of laser resonators is a requirement in components that must operate robustly within the narrow absolute frequency bands of the DWDM specifications. Thermally compensated resonators have has been shown using polymer materials. See * K. Tada et al., Optical and Quantum Electronics 16, 463 (1984) and * Y. Kokubun et al., Proceedings of the Integrated Photonics Research Conference, Optical Society of America, p. 93 (1998). Thermally compensated packages for fiber grating based devices have also been shown. See * W. Morey, U.S. Pat. No. 5,042,898, Aug. 27, 1991, * G. W. Yoffe et al, Appl. Opt. 34 6859 (1995), and * J-M. Verdiell, U.S. Pat. No. 5,870,417, Feb. 9, 1999. Thermally compensated waveguides using mixed silica-polymer materials have also been shown to produce temperature independent characteristics. See * Y. Kokubun et al., IEEE Photon. Techn. Lett. 5 1297 (1993), and * D. Bosc, U.S. Pat. No. 5,857,039, Jan. 5, 1999. Silica-polymer waveguides have also been used for interconnecting laser devices. See * K. Furuya U.S. Pat. No. 4,582,390, Apr. 15. 1986.
The grating assisted coupler is a useful device for frequency control. Grating assisted couplers as described in * R. C. Alferness, U.S. Pat. No. 4,737,007, Apr. 12, 1988, are known in many configurations including with mode lockers, amplifiers, modulators, and switches. See * A. S. Kewitsch, U.S. Pat. No. 5,875,272, Feb. 23, 1999. Grating assisted couplers have been used in resonators including lasers, mode lockers, etalons, add-drop filters, frequency doublers, etc. See for example * E. Snitzer, U.S. Pat. No. 5,459,801, Jan. 19, 1994, and * D. A. G. Deacon, U.S. Pat. No. 5,581,642, Dec. 3, 1996. Combinations of gratings and Fabry-Perot filters have been discussed for the DWDM application. See for example * B. Ortega et al., J. Lightwave Tech. 17 1241 (1999).
SUMMARY OF THE INVENTION
According to the invention, a pair of waveguides are provided with optical coupling therebetween, wherein the waveguides have different index of refraction responses to applied fields, thereby modifying the optical coupling. In one embodiment, the waveguide pair is incorporated in a tunable parallel coupler, wherein the coupling may be tuned by varying the index difference via an applied field. The applied field may variously be a temperature field, or an electric, acoustic, stress, chemical or other field. In a sensor embodiment, the power coupled across the parallel coupler is measured to determine the strength of a field such as in a temperature sensor where the coupled optical power is related to the temperature of the waveguide pair. In another embodiment, one of the two waveguides is intracavity to a resonator that is tunably coupled to the other waveguide without tuning a resonator frequency. In a further embodiment, the waveguide pair is incorporated into a codirectional grating assisted coupler to provide strong tuning by means of index changes in the two waveguides that are of opposite sign. In yet a further embodiment, the waveguide pair is incorporated into a wavelength selective interference device such as an arrayed waveguide grating wherein a desired spatial pattern of phase relationships between the arms may be adjusted by application of a substantially uniform field. In a specific embodiment, the waveguide pair is fabricated from a silica core and lower cladding, a silica upper cladding is formed with different thicknesses at the two waveguides, resulting in different mode overlaps for the modes of the two waveguides with a thermo optic polymer material, and producing a
Protsik Mark
Rojas, Jr. Omar
Sanghavi Hemang
Schneck Thomas
Sparkolor Corporation
LandOfFree
Differential waveguide pair does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Differential waveguide pair, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Differential waveguide pair will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2875920