Differential integrator and related circuitry

Miscellaneous active electrical nonlinear devices – circuits – and – Specific input to output function – By integrating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C327S333000, C327S589000, C330S258000

Reexamination Certificate

active

06636098

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to electronic devices and circuits and, more particularly, to an improved differential integrator and related circuitry.
BACKGROUND OF THE INVENTION
As electronics continue to get faster, more data is required to travel between the chips that process the data. In order to reliably transmit or receive the data, a clock signal is typically sent with the data. If only one edge of the clock signal is used for synchronizing the data, the clock signal frequency will need to be twice the frequency of the data. This doubling of clock signal frequency can easily become the system limiting factor because higher frequency signals are harder to transmit.
The clock signal can be slowed to the same frequency of the data if both edges of the clock signal are used to synchronize the data. However, this requires that both halves of the clock signal have an equal 50%/50% duty cycle, so that each piece of data has a maximum transmit or receive time. A duty cycle corrector can correct a bad clock signal by measuring the on-time and the off-time of the clock signal, and then adjusting the clock signal until the on-time and off-time are equal, thus producing an equal 50%/50% duty cycle clock signal.
The key to achieving accurate clock signal correction is an integrator. That is, an integrator is used to measure the on-time and the off-time of a clock signal, and an error signal is generated if the two are not equal. The integrator may be single-ended or differential, but in either case, as technology advances, it actually gets more difficult to make high quality integrators. This is due to several factors, including the following: voltages being reduced; devices getting smaller; some physical parameters not changing as fast as others; leakage currents; and less ideal devices. To overcome these limitations, new circuit techniques are needed to produce an integrator with small internal error. Currently, without these new circuit techniques, duty cycle errors of two percent are not uncommon, and this problem will only get worse as technology continues to advance.
For example, when using a differential integrator to generate an error voltage, a large output swing is desired to reduce jitter caused by differential noise and power supply noise. For maximum differential output range of a differential integrator, output common-mode should be at one-half the operating voltage (i.e., ½V
DD
) to provide maximum saturation voltage for nmos and pmos current sources performing the integration. However, the generated voltage must drive a differential-pair to perform the correction for which it was established. In low voltage (i.e., less than 2 volts as measured between a transistor gate and source) applications, neither an nmos nor pmos differential-pair will operate in a dead band region centered around ½V
DD
. Additionally, because the integrator is integrating charge, any differential charge that is output thereby directly translates into an integrating error. This means that traditional methods of level shifting fail. For example, a source-follower is differentially range limited because it is single ended, and a resistive divider causes a differential current error. As a result, an alternative is needed to achieve maximum output range.
Another problem arises when a large output swing is desired, which is especially true in low-voltage applications. A small overdrive voltage for transistors operating as current-sources requires a large transistor width/length (W/L) ratio. To save area and parasitic capacitance (e.g., speed and charge injection errors), a small L is used and only constrained by the matching desired. This now means that channel-length modulation (CLM) is the dominant source of mismatch between the differential current sources. This too must be reduced for a high-precision integrator (i.e., an integrator used to correct duty cycle error to less than two percent for all corners of operation, with that percentage of error potentially increasing as technology advances). In general, as mentioned above, analog circuits keep becoming more difficult to make as the operating voltage (i.e., V
DD
) scales, but threshold voltage (i.e., V
t
) does not.
At this point it should be noted that duty cycle correction is not the only place to use a high precision integrator. They can be used in other applications where the timing of one event needs to match another event. For example, one such application is an analog phase detector where two edges are adjusted with 90 degrees of phase offset between them (e.g., a quadrature phase detector). In this application, as with the duty cycle correction application, new circuit techniques are needed to produce an integrator with small internal error.
In view of the foregoing, it would be desirable to provide an improved differential integrator which overcomes the above-described inadequacies and shortcomings in an efficient and cost effective manner.
SUMMARY OF THE INVENTION
According to the present invention, an improved differential integrator and related circuitry is provided. In one exemplary embodiment, the improved differential integrator comprises an integrating gain boosted cascode circuit for receiving an input signal having a first locking time and for generating an output signal having a second locking time, wherein the second locking time being delayed by a predetermined amount from the first locking time.
According to other aspects of this exemplary embodiment of the present invention, the improved differential integrator further comprises a multi-node common-mode feedback circuit that is coupled to the integrating gain boosted cascode circuit. The multi-node common-mode feedback circuit receives at least one bias signal and reduces offset in a desired common-mode of the output signal based thereon.
According to further aspects of this exemplary embodiment of the present invention, the improved differential integrator further comprises a dynamic cascode common-mode feedback circuit that is coupled to the integrating gain boosted cascode circuit and the multi-node common-mode feedback circuit. The dynamic cascode common-mode feedback circuit compares the output signal and a reference voltage and generates the at least one bias signal in response thereto.
According to still further aspects of this exemplary embodiment of the present invention, the improved differential integrator further comprises a nap mode circuit that is coupled to the integrating gain boosted cascode circuit and the multi-node common-mode feedback circuit. The nap mode circuit receives a feedback signal and a nap signal and determines a sleep mode based thereon, wherein a differential charge associated with the output signal and the second locking time is stored during the sleep mode.
According to still further aspects of this exemplary embodiment of the present invention, the improved differential integrator further comprises a level shifter circuit that is coupled to the integrating gain boosted cascode circuit. The level shifter circuit level shifts the output signal so as to generate a level shifted output signal.
According to still further aspects of this exemplary embodiment of the present invention, wherein the integrating gain boosted cascode circuit is a first integrating gain boosted cascode circuit, the improved differential integrator further comprises a second integrating gain boosted cascode circuit that is coupled to an output node of the first integrating gain boosted cascode circuit. The second integrating gain boosted cascode circuit generates a pair of output signals.
According to another exemplary embodiment of the present invention, an integrating gain boosted cascode circuit is provided comprising a gain boosted cascode structure for receiving substantially equal input voltages and for generating a differential voltage to compensate for channel length modulation. The integrating gain boosted cascode circuit also comprises a capacitor compensation circuit, coupled to an output of the gain boos

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Differential integrator and related circuitry does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Differential integrator and related circuitry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Differential integrator and related circuitry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3164551

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.