Diet and activity-monitoring device

Surgery – Computer assisted medical diagnostics – Diet management

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S595000

Reexamination Certificate

active

06513532

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to activity monitors and diet monitors and, more specifically, to a device that combines both diet and activity monitoring.
BACKGROUND OF THE INVENTION
Management of diet, health, and fitness has drawn increasing amounts of attention as their importance has been recognized, and as consumers around the world have struggled to balance busy lives with fitness and proper diet. Despite the recognized importance of good health, consumers, on average, are becoming increasingly obese. This has resulted in a strong demand for devices and methods that assist individuals in setting and reaching dietary and fitness goals. Currently available devices and methods fail to meet the needs of average consumers.
There are serious problems with conventional weight loss programs. Weight change is related to the user's net caloric balance, the difference between caloric intake and caloric expenditure. However, determination of caloric intake and caloric expenditure are both problematic.
There are numerous difficulties in accurately determining caloric intake. In some diet programs printed or electronic lists are used that provide the nutrition content of a wide variety of food. The consumer keeps a diet log of all foods consumed each day in order to determine their total nutritional intake. These systems typically are laborious to use and only the most dedicated consumer will accurately use these approaches. For example, a consumer must take the time to accurately record the foods consumed each day. Obviously, recognition of foods consumed is most accurate if done at the time the foods are consumed. However, many individuals feel too rushed to record the foods consumed at the time and postpone recording for later in the day or week. Also, some consumers are embarrassed to be observed recording food intake during or following a meal. This also motivates the user to wait to record their consumption until later. Obviously, accuracy suffers the more time passes between consumption and recordation. An individual may entirely forget that they had a snack or two earlier in the day or week, leading to undercounting of consumption.
Determining total energy expenditure is also difficult. The total energy expenditure of a person comprises a resting metabolic component and a physical activity component. Total energy expenditure (TEE) is the sum of resting energy expenditure (REE) and activity energy expenditure (AEE), i.e. TEE=AEE+REE. Weight loss occurs if total energy expenditure (TEE) exceeds total caloric intake over a given time period. As discussed by Remmereit in U.S. Pat. No. 6,034,132, 70 percent of total energy expenditure for a typical person is due to their resting metabolic rate (RMR). In a conventional diet program, RMR is estimated from the height, weight, age, and gender of the person, for example using the Harris-Benedict equation. This equation, well known to those skilled in the nutritional arts, is given in U.S. Pat. No. 5,839,901 to Karkanen, and in U.S. Pat. No. 5,639,471 to Chait et al. There are serious inadequacies in using the Harris-Benedict equation (or any similar equation) in a weight loss program. The Harris-Benedict equation provides only an estimated RMR, which is an average value for people of similar height, weight, age, and gender. However, due to natural variations in physiology, the equation may not be accurate for a specific individual.
Conventional weight loss programs use an estimated total energy expenditure (TEE) based on estimates of activity levels, and estimates of resting energy expenditure (REE) from the Harris-Benedict equation. However, unless the resting energy expenditure (REE) and the activity energy expenditure (AEE) are estimated accurately, the person's caloric balance cannot be known accurately, and the outcome of a weight loss program is likely to be unsatisfactory.
Some users attempt to track their activity energy expenditure (AEE), either for weight loss or general fitness purposes. In the simplest approach the individual maintains an exercise log of activities conducted, such as distances walked or jogged. Various graphs and tables can then provide an estimate of the calories burned during these activities. As with recording consumption, an individual may fail to accurately record the type and duration of activity undertaken leading to inaccurate recordation. Also, an individual may not know how far or fast they ran or walked. A variety of pedometers are available to assist with this task. Pedometers include some type of stride counter in order to count the number of strides or paces taken by the individual. The devices may be calibrated to allow them to determine the distance traveled with reasonable accuracy. Through the use of timers, they may also be able to determine the speed and duration of activity. Pedometers typically fail to take into consideration changes of elevation, changes in length of stride and changes in intensity. For example, a runner may combine slow walking with brisk running during an exercise session. By combining total number of strides and duration of activity, the pedometer may only determine average speed, not instantaneous speed.
U.S. Pat. Nos. 6,002,982 and 6,148,262 to Fry; U.S. Pat. No. 6,013,007 to Root et al; U.S. Pat. Nos. 6,009,138 to Slusky; and U.S. Pat. Nos. 6,032,108 to Seiple et al each disclose improved activity monitors utilizing a global positioning system (GPS). The devices track an individual's position over time, using the GPS network. By periodically or instantaneously comparing position and time, such a device is capable of determining a performance profile with better accuracy than a typical pedometer.
Devices are also available for monitoring and tracking heart rate. The most popular of these devices are sold by Polar Electro Oy of Finland. These heart rate monitors includes a wristwatch-style display unit and a chest strap with a heart rate sensor. The chest strap and display unit communicate wirelessly. The devices are capable of accurately monitoring heart rate, which correlates reasonably well with exercise intensity. Advanced devices include the ability to track heart rate over time so that a heart rate profile may be produced.
Each of the above-discussed activity monitors fails to consider the dietary intake portion of total health management. Instead, they are directed merely to activity monitoring. In light of this, there remains a need for a device that combines activity monitoring and diet monitoring, that is easy to use and provides accurate results.
SUMMARY OF THE INVENTION
The present invention improves on the prior art by providing a combination diet and activity monitoring device for monitoring both the consumption and activity of the subject. The effectiveness of weight management programs may be improved through a more accurate determination of caloric balance. Improved determination of caloric balance may be obtained by more accurate determinations of total energy expenditure, (the sum of resting energy expenditure and activity energy expenditure) and caloric intake. The present invention focuses on improving the determination of activity energy expenditure and caloric intake. Resting energy expenditure, the energy expended by an individual at rest, may be accurately determined using an indirect calorimeter, such as described in co-pending patent application Ser. No. 09/630,398, incorporated herein by reference. As discussed in this application, resting energy expenditure is based on resting metabolic rate. Resting metabolic rate changes over time, especially when the subject changes their diet or exercise patterns. Therefore, it is preferable to periodically measure resting metabolic rate so that accurate determinations of resting energy expenditure are available during a weight management program.
Determination of activity energy expenditure, which combined with resting energy expenditure provides total energy expenditure, may be obtained by monitoring a subject's activity on a regular

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diet and activity-monitoring device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diet and activity-monitoring device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diet and activity-monitoring device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3179826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.