Diesel engine emissions reduction by multiple injections...

Internal-combustion engines – Combustion chamber means having fuel injection only – Using multiple injectors or injections

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S295000

Reexamination Certificate

active

06526939

ABSTRACT:

FIELD OF THE INVENTION
This disclosure concerns an invention relating generally to methods and apparata for reducing emissions from internal combustion engines, and more specifically to methods and apparata for reducing particulate and NO
x
emissions from diesel engines.
BACKGROUND OF THE INVENTION
Common pollutants arising from the use of internal combustion engines are nitrogen oxides (commonly denoted NO
x
and particulates (also known simply as“soot”). NO
x
is generally associated with high-temperature engine conditions, and may be reduced by use of measures such as exhaust gas recirculation (EGR), wherein the engine intake air is diluted with relatively inert exhaust gas (generally after cooling the exhaust gas). This reduces the oxygen in the flame front and obtains a reduction in maximum combustion temperature, thereby deterring NO
x
formation. Particulates include a variety of matter such as elemental carbon, heavy hydrocarbons, hydrated sulfuric acid, and other large molecules, and are generally associated with non-optimal combustion. Particulates can be reduced by increasing combustion and/or exhaust temperatures, or by providing more oxygen to promote oxidation of the soot particles. Unfortunately, measures which reduce NO
x
tend to increase particulate emissions, and measures which reduce particulates tend to increase NO
x
emissions, resulting in what is often termed the “soot-NO
x
tradeoff”.
At the time of this writing, the diesel engine industry is facing stringent emissions legislation in the United States, and is struggling to find methods to meet government-imposed NO
x
and soot targets for the years 2002-2004 and even more strict standards for 2008. One measure under consideration is use of exhaust after-treatment (e.g., particulate traps) for soot emissions control in both heavy-duty truck and automotive diesel engines. However, in order to meet mandated durability standards (e.g., 50,000 to 100,000 miles), the soot trapped must be periodically re-burned. This requires considerable expense and complexity, since typically additional fuel must be mixed and ignited in the exhaust stream in order to burn off the accumulated particulate deposits.
Apart from studies directed to after-treatment, there has also been intense interest in the more fundamental issue of how to reduce NO
x
and particulates generation from the combustion process. Studies in this area relate to shaping combustion chambers, timing the fuel injection, modifying the mode of injection (e.g, modifying the injection spray pattern), or tailoring the injection rate during injection so as to meet desired emissions standards. As an example of the use of tailored injection rate, U.S. Pat. No. 5,345,916 to Amman, entitled “Controlled Fuel Injection Rate for Optimizing Diesel Engine Operation,” discusses how injection curves (i.e., variation in injection rates over time) can be modified depending on engine speed/load to optimize engine performance. Examples of injection curves wherein the injection rate decreases over time are illustrated (FIGS. 5B and 5D of Amman). Others have taken an opposite approach and proposed injection curves with increasing injection rates. Still others have proposed injection curves which are considerably more complex than simple ascending or descending curves, and which may increase during some period of charge injection and decrease over others; see, e.g., U.S. Pat. No. 5,425,341 to Connolly et al., wherein the shape of the injection curve varies in complexity depending on speed/load conditions.
Multiple injection, also called split injection, pilot injection, and post injection, has also been a proposed method for NO
x
and particulate emissions reduction in diesel engines (see, e.g., Tow, T., Pierpont, A. and Reitz, R. D. “Reducing Particulates and NO
x
Emissions by Using Multiple Injections in a Heavy Duty 0.1. Diesel Engine,” SAE Paper 940897, SAE Transactions, Vol. 103, Section 3, Journal of Engines, pp. 1403-1417, 1994). A multiple injection engine varies from the standard “single injection” engine in that the injection of a single fuel charge during the combustion cycle is replaced by injection of several fuel charges spaced over time, with less fuel being used per injection so that the total amount of fuel finally injected per cycle is comparable to that used in single injection. By spacing fuel injection into several discrete spaced charges, burning and combustion temperature are more evenly maintained and combustion temperature is lower, which helps decrease emissions. While multiple injection is not in common use at the time of this writing, engines using the multiple injection concept are now in production or under development in Europe, Japan and the United States.
While multiple injection will assist the diesel engine industry in meeting emissions goals, it unfortunately does not appear to be a complete solution: it does not by itself decrease emissions to the minimum levels desired. There is thus a significant need for methods and apparata which assist in diesel engine emissions reduction.
SUMMARY OF THE INVENTION
The invention involves methods and apparata which are intended to at least partially solve the aforementioned problems. To give the reader a basic understanding of some of the advantageous features of the invention, following is a brief summary of preferred versions of the methods and apparata. As this is merely a summary, it should be understood that more details regarding the preferred versions may be found in the Detailed Description set forth elsewhere in this document. The claims set forth at the end of this document then define the various versions of the invention in which exclusive rights are secured.
The invention relates to methods of, and apparata for, diesel engine fuel injection. A first fuel charge is injected into a diesel engine combustion chamber during a combustion cycle. Afterward, one or more subsequent fuel charges are injected at a higher injection pressure (and thus a higher injection rate) than the first fuel charge. Where more than one fuel charge is injected after the first fuel charge, each will have a higher injection pressure (and thus a higher injection rate) than the prior fuel charge so that the second fuel charge has a higher injection pressure/rate than the first charge, the third fuel charge has a higher injection pressure/rate than the second charge, and so forth. It is believed that this methodology will result in reduced soot and NO
x
emissions over single charge injection schemes using roughly analogous charge timing and volume (i.e., in injection schemes having a single charge injected over roughly the same timespan as in the multiple injection scheme of the invention, and with the same fuel charge volume). It is also believed that the invention will result in decreased soot emissions over those obtained in comparable multiple charge injection schemes using constant injection pressures between charges. As will be discussed elsewhere in this document, a multiple injection scheme with increasing injection pressures in successive fuel pulses is believed to provide increased combustion chamber mixing and soot oxidation rates. Particulate control is advantageously achieved within the combustion chamber using a straightforward modification of existing injection system hardware, without the need for cumbersome and expensive particulate traps. Additionally, Exhaust Gas Recirculation (EGR) can be used with the invention to provide for further NO
x
reductions. Thus, the invention allows simultaneous and significant reduction of both NO
x
and particulates emissions, which are (at the time of this writing) the key emissions of concern for diesel engine environmental standards. The multiple injection scheme may also result in better fuel economy than single injection schemes since the first fuel pulse in a series can be started slightly earlier than where only a single pulse is used, so that the greatest heat from the fuel pulse is released when the piston is optimally timed near top dead center.
Further advant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diesel engine emissions reduction by multiple injections... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diesel engine emissions reduction by multiple injections..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diesel engine emissions reduction by multiple injections... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3022383

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.