Electricity: electrical systems and devices – Electrostatic capacitors – Fixed capacitor
Reexamination Certificate
2000-09-12
2002-04-23
Reichard, Dean A. (Department: 2831)
Electricity: electrical systems and devices
Electrostatic capacitors
Fixed capacitor
C361S321200, C361S312000, C361S321500, C029S025030, C257S595000, C257S602000, C257S661000
Reexamination Certificate
active
06377440
ABSTRACT:
BACKGROUND OF INVENTION
This invention relates generally to tunable capacitors, and more particularly to voltage-tuned dielectric capacitors that operate at radio frequencies.
A varactor is a voltage tunable capacitor in which the capacitance can be changed by the voltage applied thereto. This property has many applications in radio frequency (RF) circuits, such as tunable filters, phase shifters, delay lines, voltage controlled oscillators, and so on. The most commonly used varactor is a semiconductor diode varactor. However, semiconductor diode varactors suffer from low Q factors (especially at high frequencies), low power handling, and high intermodulation distortion. Common varactors used today are silicon and gallium arsenide based diodes. The performance of these varactors is defied by the capacitance ratio, C
max
/C
min
, frequency range and figure of merit, or Q factor, at the specified frequency range. The Q factors for these semiconductor varactors for frequencies up to 2 GHz are usually very good. However, at frequencies above 2 GHz, the Q factors of these varactors degrade rapidly. For example, at 10 GHz the Q factors for these varactors are usually only about 30.
Another type of tunable varactor is a dielectric varactor, whose capacitance is tuned by applying a control voltage to change a dielectric constant in a tunable dielectric material. Dielectric varactors have high Q factors, high power handling, low intermodulation distortion, wide capacitance range, and low cost.
Tunable ferroelectric materials are materials whose permittivity (more commonly called dielectric constant) can be varied by varying the strength of an electric field to which the materials are subjected. Even though these materials work in their paraelectric phase above the Curie temperature, they are conveniently called “ferroelectric” because they exhibit spontaneous polarization at temperatures below the Curie temperature. Tunable ferroelectric materials including barium-strontium titanate (BST) or BST composites have been the subject of several patents.
Dielectric materials including barium strontium titanate are disclosed in U.S. Pat. No. 5,312,790 to Sengupta, et al. entitled “Ceramic Ferroelectric Material”; U.S. Pat. No. 5,427,988 to Sengupta, et al. entitled “Ceramic Ferroelectric Composite Material—BSTO—MgO”; U.S. Pat. No. 5,486,491 to Sengupta, et al. entitled “Ceramic Ferroelectric Composite Material—BSTO—ZrO
2
”; U.S. Pat. No. 5,635,434 to Sengupta, et al. entitled “Ceramic Ferroelectric Composite Material—BSTO-Magnesium Based Compound”; U.S. Pat. No. 5,830,591 to Sengupta, et al. entitled “Multilayered Ferroelectric Composite Waveguides”; U.S. Pat. No. 5,846,893 to Sengupta, et al. entitled “Thin Film Ferroelectric Composites and Method of Making”; U.S. Pat. No. 5,766,697 to Sengupta, et al. entitled “Method of Making Thin Film Composites”; U.S. Pat. No. 5,693,429 to Sengupta, et al. entitled “Electronically Graded Multilayer Ferroelectric Composites”; and U.S. Pat. No. 5,635,433 to Sengupta, entitled “Ceramic Ferroelectric Composite Material—BSTO—ZnO”. These patents are hereby incorporated by reference. A copending, commonly assigned United States patent application titled “Electronically Tunable Ceramic Materials Including Tunable Dielectric And Metal Silicate Phases”, by Sengupta, filed Jun. 15, 2000, discloses additional tunable dielectric materials and is also incorporated by reference. The materials shown in these patents, especially BSTO—MgO composites, show low dielectric loss and high tunability. Tunability is defined as the fractional change in the dielectric constant with applied voltage.
There are two conventional dielectric varactor structures, a planar structure and a vertical structure. The conventional planar structure varactor has a simple configuration, simple fabrication processing, and low capacitance. In planar structure varactors, a tunable film is directly deposited on a whole surface of a substrate, followed by the deposition of metal film. A metal etching process is used to obtain specific metal patterns. High processing temperatures may be necessary to achieve a high-quality tunable film. The quality of the tunable film is the main factor in determining performance of the dielectric varactor. The processing temperature of the tunable film is typically above 650° C. for thin film, and above 1000° C. for thick film. Since there is no bottom electrode or metal film that is subject to the high processing temperature, the conventional planar structure varactor may be more easily fabricated than the vertical structure varactor.
Varactors that utilize a thin film ferroelectric ceramic as a voltage tunable element in combination with a superconducting element have been described. For example, U.S. Pat. No. 5,640,042 discloses a thin film ferroelectric varactor having a carrier substrate layer, a high temperature superconducting layer deposited on the substrate, a thin film ferroelectric deposited on the metallic layer, and a plurality of metallic conductive means disposed on the thin film ferroelectric, which are placed in electrical contact with RF transmission lines in tuning devices. Another tunable capacitor using a ferroelectric material in combination with a superconducting material is disclosed in U.S. Pat. No. 5,721,194.
In some radio frequency applications, varactors having a relatively low capacitance are required. By adjusting gap size and gap width in a planar varactor, low capacitance (~1 pF) is very easily obtained. However, the bias voltage required for planar structure varactors with such relatively low capacitance can become excessive.
Using the vertical structure, wherein a layer of tunable dielectric material is positioned between two flat electrodes, can significantly reduce the required bias voltage. The bias voltage in a planar varactor is much higher than that for the vertical structure varactor, because the gap in the planar structure is usually much bigger than thickness of the tunable film in the vertical structure, especially in the case of thin film varactors.
However in a vertical structure varactor, it is difficult to achieve low capacitance, such as less than 1 pF, because of the small thickness and high dielectric constant of the tunable film. Reducing electrode area is a way to make low capacitance varactors, which are desired for many tunable devices. However, the area of the top electrode, which determines capacitance, is limited by etching processing, and the connection line (wire).
There is a need for relatively low capacitance varactors that can operate at temperatures above those necessary for superconduction and at bias voltages less than those required for existing planar varactor structures, while maintaining high tunability and high Q factors.
SUMMARY OF THE INVENTION
Varactors constructed in accordance with this invention include a substrate, a first conductor positioned on a surface of the substrate, a second conductor positioned on the surface of the substrate forming a gap between the first and second conductors, a tunable dielectric material positioned on the surface of the substrate and within the gap, the tunable dielectric material having a top surface, with at least a portion of said top surface being positioned above the gap opposite the surface of the substrate, and a first portion of the second conductor extending along at least a portion of the top surface of the tunable dielectric material. The second conductor can overlap or not overlap a portion of the first conductor.
REFERENCES:
patent: 3879645 (1975-04-01), Rutt et al.
patent: 5312790 (1994-05-01), Sengupta et al.
patent: 5427988 (1995-06-01), Sengupta et al.
patent: 5486491 (1996-01-01), Sengupta et al.
patent: 5635433 (1997-06-01), Sengupta
patent: 5635434 (1997-06-01), Sengupta
patent: 5640042 (1997-06-01), Koscica et al.
patent: 5693429 (1997-12-01), Sengupta et al.
patent: 5721194 (1998-02-01), Yandrofski et al.
patent: 5766697 (1998-06-01), Sengupta et al.
patent: 5830591 (1998-11-01), Sengupta et al.
patent: 5846893 (1998-12-01), Sengupta et a
Sengupta Louise C.
Zhang Xubai
Zhu Yongfei
Ha Nguyen
Paratek Microwave Inc.
Reichard Dean A.
Robert P. Lenart, Pietragallo, Bosick & Gordon
LandOfFree
Dielectric varactors with offset two-layer electrodes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dielectric varactors with offset two-layer electrodes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dielectric varactors with offset two-layer electrodes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2884770