Coating processes – Optical element produced – Polarizer – windshield – optical fiber – projection screen – or...
Reexamination Certificate
2000-06-27
2002-01-01
Yoon, Tae H. (Department: 1714)
Coating processes
Optical element produced
Polarizer, windshield, optical fiber, projection screen, or...
C427S058000, C428S500000, C428S910000, C252S585000, C369S030850, C369S030850
Reexamination Certificate
active
06335051
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a polarizing film and an optical polarizer containing the film. More particularly, the invention relates to a dichroic polarizing film made from a dispersion or solution of a polyvinyl alcohol and a second polymer, and an optical polarizer containing the film.
BACKGROUND OF THE INVENTION
Optical polarizing film is widely used for glare reduction and for increasing optical contrast in such products as sunglasses and Liquid Crystal Displays (LCD). One of the most commonly used types of polarizers for these applications is a dichroic polarizer which absorbs light of one polarization and transmits light of the other polarization. One type of dichroic polarizer is made by incorporating a dye into a polymer matrix which is stretched in at least one direction. Dichroic polarizers may also be made by uniaxially stretching a polymer matrix and staining the matrix with a dichroic dye. Alternatively, a polymer matrix may be stained with an oriented dichroic dye. Dichroic dyes include anthraquinone and azo dyes, as well as iodine. Many commercial dichroic polarizers use polyvinyl alcohol as the polymer matrix for the dye.
Another type of polarizer is a reflective polarizer which reflects light of one polarization and transmits light of another orthogonal polarization. One type of reflective polarizer is made by forming a stack of alternating sets of polymer layers, one of the sets being birefringent to form reflective interfaces in the stack. Typically, the indices of refraction of the layers in the two sets are approximately equal in one direction so that light polarized in a plane parallel to that direction is transmitted. The indices of refraction are typically different in a second, orthogonal direction so that light polarized in a plane parallel to the orthogonal direction is reflected.
One measure of performance for polarizers is the extinction ratio. The extinction ratio is the ratio of a) light transmitted by the polarizer in a preferentially transmitted polarization state to b) light transmitted in an orthogonal polarization state. These two orthogonal states are often related to the two linear polarizations of light. However, other types of orthogonal states, such as, left and right-handed circular polarizations or two orthogonal elliptical polarizations may also be used. The extinction ratios of dichroic polarizers vary over a wide range depending on their specific construction and target application. For example, dichroic polarizers may have extinction ratios between 5:1 and 3000:1. Dichroic polarizers used in display systems typically have extinction ratios which are preferably greater than 100:1 and even more preferably greater than 500:1.
Dichroic polarizers typically absorb light in the non-transmission polarization. However, dichroic polarizers also absorb some of the light having the high transmission polarization. The amount of this absorption depends on the details of the construction of the polarizer and the designed extinction ratio. For high performance display polarizers, such as those used in LCDs, this absorption loss is typically between about 5 and 15%. The reflectivity of these polarizers for light having the absorption (i.e., low transmission) polarization tends to be small. Even with surface reflections included, this reflectivity is typically less than 10% and usually less than 5%.
Reflective polarizers typically reflect light having one polarization and transmit light having an orthogonal polarization. Reflective polarizers often have incomplete reflectivity of the high extinction polarization over a wavelength region of interest. Typically, the reflectivity is greater than 50% and is often greater than 90% or 95%. A reflective polarizer will also typically have some absorption of light having the high transmission polarization. Typically, this absorption is less than about 5 to 15%.
The above two types of polarizers may be combined to make a single optical polarizer, thereby incorporating the useful characteristics of both types of polarizers. These polarizers may be formed and, optionally, oriented together. Unfortunately, the polyvinyl alcohol film used in many dichroic polarizers tends to crack under the processing conditions necessary to prepare some reflective polarizers, including, for example, those which use polyethylene naphthalate (PEN) or coPEN optical layers. These reflective polarizers may be formed by stretching a polymeric film at processing temperatures, such as 135 to 180° C., and a stretch ratio of between 2:1 and 10:1. There is a need for a dichroic film layer that does not crack under these processing conditions.
Dichroic polarizers may also be used with other optical devices, such as other types of reflective polarizers and mirrors. The combination of a dichroic polarizer with an IR mirror may be useful for reducing glare. The formation of the dichroic polarizer in combination with the mirror retains the processing difficulties mentioned above, especially when the mirror is made using oriented polyester layers.
SUMMARY OF THE INVENTION
Accordingly, the present invention relates to dichroic polarizing films and their use in optical polarizers. In one embodiment, a polarizing film includes a polymeric film which contains polyvinyl alcohol and a second polymer. The polymeric film is oriented and incorporates a dichroic dye material. The dichroic dye material may be incorporated before or after stretching of the film.
Another embodiment is an optical device which includes a substrate and a polarizing film. The polarizing film is disposed on the substrate and contains polyvinyl alcohol and a second polymer. The polymeric film is oriented and incorporates a dichroic dye material.
A further embodiment is a method of making an optical device. The method includes forming a dispersion of polyvinyl alcohol and a second polymer in a solvent. A substrate is coated with the dispersion/solution and then the solvent is removed from the dispersion to form a polymeric film. The polymeric film is then oriented by stretching in at least one direction. A dichroic dye material is also incorporated in the polymeric film.
Another embodiment is a display device made from a polarizing film. The polarizing film includes a polymeric film which contains polyvinyl alcohol and a second polymer. The polymeric film is oriented and incorporates a dichroic dye material.
The above summary of the invention is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures and the detailed description which follow more particularly exemplify these embodiments.
REFERENCES:
patent: 540768 (1895-06-01), Western
patent: 2444712 (1948-07-01), Signaigo
patent: 3124639 (1964-03-01), Kahn
patent: 3610729 (1971-10-01), Rogers
patent: 3711176 (1973-01-01), Alfrey, Jr. et al.
patent: 3860036 (1975-01-01), Newman, Jr.
patent: 4304901 (1981-12-01), O'Neill et al.
patent: 4440541 (1984-04-01), Berke
patent: 4446305 (1984-05-01), Rogers et al.
patent: 4520189 (1985-05-01), Rogers et al.
patent: 4521588 (1985-06-01), Rogers et al.
patent: 4525413 (1985-06-01), Rogers et al.
patent: 4544693 (1985-10-01), Surgant
patent: 4659523 (1987-04-01), Rogers et al.
patent: 4659563 (1987-04-01), Dobkin
patent: 4720426 (1988-01-01), Englert et al.
patent: 4756953 (1988-07-01), Utsumi
patent: 4802745 (1989-02-01), Okada et al.
patent: 4890365 (1990-01-01), Langer
patent: 5122557 (1992-06-01), Claussen et al.
patent: 5188760 (1993-02-01), Hikmet et al.
patent: 5211878 (1993-05-01), Reiffenrath et al.
patent: 5213582 (1993-05-01), Wild et al.
patent: 5235443 (1993-08-01), Barnik et al.
patent: 5269995 (1993-12-01), Ramanathan et al.
patent: 5294657 (1994-03-01), Melendy et al.
patent: 5316703 (1994-05-01), Schrenk
patent: 5319478 (1994-06-01), Fijnfschilling et al.
patent: 5340504 (1994-08-01), Claussen
patent: 5389324 (1995-02-01), Lewis et al.
patent: 5427835 (1995-06-01), Morrison et al.
patent: 5448404 (1995-09-01), Schrenk et al.
patent: 5486935 (1996-01-01), Kalmanash
patent: 5486949
Kausch William L.
Merrill William W.
Williams Brian H.
3M Innovative Properties Company
Black Bruce E.
Yoon Tae H.
LandOfFree
Dichroic polarizing film and optical polarizer containing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dichroic polarizing film and optical polarizer containing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dichroic polarizing film and optical polarizer containing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2841754