Diameter reducible, multiple part optical disk

Dynamic information storage or retrieval – Storage medium structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S289100

Reexamination Certificate

active

06754165

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of optical disks, currently known by those skilled in the art as CDs and DVDs, used as computer programming storage mediums.
2. Relevant Concept
As introductory information that will teach a concept important to the present invention, reference will be made to the advancement of rocket capability and pertinent to the present invention, utilization of “multiple stage” verses single stage configurations.
Early rockets were constructed using single stage designs. To increase performance, the concept of multiple stages and expendable separable parts was implemented advancing the art of rocket design. The concept of multiple expendable parts, and the “less is more”, are pertinent to the present invention.
RELEVANT TECHNOLOGY
With computer readable programming devices such as optical disks, the subject of the present invention, have the ability of storing data in the form of lands and pits. Data stored on the optical disk spirals from the center of the disk to the disk's circumference. An optical disk drive generates a tightly focused laser beam to strike the lands and pits on the surface of the disk. Light that strikes a pit is scattered and light that strikes a land is reflected directly back at a detector. By reading the lands and pits, the detector generates electrical voltages, which are matched against a timing circuit to generate a binary stream. The binary stream is in turn read by a computer. The optical disk may be embodied in various forms including erasable optical disks, WORMS (write once, read many) and be either CDs or DVDs and other optical formats yet to be developed.
Optical disks are presently available in two sizes for personal computers, PCs, the 120 mm diameter disk and the 80 mm diameter disk. The smaller 80 mm disk, when further customized to have two opposing parallel sides (see
FIG. 2
) that maybe, for example only, 50 mm apart, and two opposing radial ends 80 mm apart, approximates the size but not exact shape of a printed paper business card or plastic credit card commonly used in commerce. With the growing proliferation of PCs, a custom shaped optical disk, with (1) traditional business contact information graphically displayed on the non-read side and (2) computer readable data on the read side is gaining favor for introductions due to its computer compatible card size format. It can also readily be understood that this custom disk fits properly in a disk drive, in the palm of a hand, stores conveniently as a business card and is easily transportable in a purse or wallet. It will readily be understood that a card size optical disk, when compared to the data storage capable of a full size disk, has significantly less available memory. Providing the convenience of a card size disk while maintaining large memory capability is the present invention.
Presentations on optical disk often require the memory capacity of the 120 mm disk. But presenters of the complete data, as well as the consumer, may prefer and, for some intended uses, ultimately require the convenient size and portability of the smaller custom shaped optical disk.
There are circumstances, after a presentation has been made requiring the 120 mm disk capability, when only “support data”, a small portion of the original data, need remain accessible from the disk. It is understood that the limited “support data” would be positioned near the starting point of the of the disk presentation. This being the case, some of the disks excess diameter size, like a “spent rocket stage”, could be considered expendable “useless baggage”, and expendable if expendablity were possible.
If an optical disk were comprised of multiple parts, i.e. a minimum of two separable parts, at least one large outer part joined to but separable from a nested smaller centrally located inner part, size reduction through elimination of the most outer disk part would be possible. The smaller disk rendered independent through separation of the two parts would offer advantages and uses not practical or even possible with the larger size disk part attached. As with the elimination of a “spent rocket stage”, reduction of disk diameter would be relateable to the statement, “less is more.”
Thus, it would be advancement in the art of computer readable programming devices to have an optical disk that, in its original size embodiment, offers not only large memory capability but is also diameter reducible to a second smaller size and capacity disk. An optical disk with separable outer part and nested inner part provides such advantages.
SUMMARY OF THE INVENTION
A two-part optical disk of the present invention comprises an optical disk that, in its original configuration, combines, but is not limited to, two disks, one large surrounding outer disk and one smaller disk nested within and removably connected to a surrounding outer disk. The two disks are sufficiently joined together to, that in the joined configuration, function as a single entity, with both disks readable through a computer disk drive to present a complete data presentation. The inner disk, located within the two-part disk, has an outer diameter smaller than the outer diameter of the larger surrounding outer disk. Separation of the larger outer disk from the smaller central disk is accomplished through opposing pressure applied on the two disks and renders two independent optical disks; (1) a large outer disk and (2) a smaller nested disk which is removable from within the two-part embodiment. The limited data capability of the smaller disk is intended for, but not limited to, support of the former complete data presentation. After removable of the disk that was nested containing the sprocket hole required for engaging properly with a computers disk drive, the outer disk of the formerly combined disk, ceases to be functional in a disk drive. The relatively large size of the outer surrounding disk could not be stored like a standard business card holder nor is it convenient for transport in a purse or wallet and, after separation, is discardable.
The two-part optical disk, with large outer disk and small nested inner disk, combines the advantages of both size disks within one embodiment. The two-part optical disk, in its original joined configuration, provides large memory capability. When only a small amount of the original data is required, the two-part disk is configured to be reducible in size from the large to the small size, through separation and elimination of the large disk that surrounds the nested disk. These and other objects, features and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.


REFERENCES:
patent: 4903255 (1990-02-01), Sugaya et al.
patent: 5579296 (1996-11-01), Smith et al.
patent: 5812519 (1998-09-01), Kawamura et al.
patent: 5882555 (1999-03-01), Rohde et al.
patent: 5978348 (1999-11-01), Tamura
patent: D447146 (2001-08-01), Myers
patent: 6304544 (2001-10-01), Pierson et al.
patent: 6400675 (2002-06-01), Everidge et al.
patent: 6424616 (2002-07-01), Al-Askari
patent: 6447870 (2002-09-01), Beck et al.
patent: 6511731 (2003-01-01), Clark
patent: 6542444 (2003-04-01), Rütsche

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diameter reducible, multiple part optical disk does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diameter reducible, multiple part optical disk, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diameter reducible, multiple part optical disk will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3345565

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.