Dial-up access response testing method and system therefor

Multiplex communications – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S245000, C370S242000, C379S014000, C379S001010, C379S009040, C379S029010, C379S029100

Reexamination Certificate

active

06480469

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of testing the various nodes of a data network and more specifically a method of determining the operational effectiveness of the various components at each site of the data network.
BACKGROUND OF THE INVENTION
A telecommunications network, such as for example a data network, that has a number of interconnected sites of a company may have at each of those sites a number of components which operations require verification from time to time. For example, in the case of a chain of department stores that has stores at different geographical locations, the various cash registers at each of those stores are communicatively interconnected to a hub; and by means of a router, information from those cash registers can be routed to a regional router and then to the headquarters of the chain, so that the management of the store chain could determine how much sales were made at each of those registers, as well as the kind of merchandise sold and whether given types of merchandise need to be reordered and shipped to those stores.
Prior to the instant invention, to test the operational effectiveness of the various components at each of the sites, a cadre of technicians have to manually input test signals into each of the components at each of the sites of the network. Such manual testing of the various components of the network takes up an inordinate amount of time, for example a great number of weeks for a moderate size company. Further, in order to accurately test the operational effectiveness of the various components of the data network, prior to the technicians manually inputting the queries, the various components, such as for example the routers, have to be taken off line by having its various interconnections severed. Obviously this manual connection/disconnection of the various components of the network is quite inefficient. Moreover, by disconnecting the various components, the network is put into jeopardy by having a portion thereof, which may very well be an important portion, disconnected. Furthermore, the process of manually connecting into the different components of the network, insofar as it is labor intensive, means that the process is subject to chronic mistakes due to inherent technician errors. This is magnified by the fact that there are oftentimes thousands of sites, or nodes, in each of the data networks. Finally, such manual testing of the different components of the network, needless to say, is quite expensive.
Accordingly, a less disruptive but yet scalable method of testing the integrity of the different components of a data network is desirable. It is moreover desirable that such testing method be less expensive than the conventional way of testing the integrity of the components of the data network.
SUMMARY OF THE INVENTION
The present invention is a method that automates the testing of the different components of a telecommunications network. Specifically, the present invention dial up access response testing (DARTS) system/method provisions a communicative means, such as for example a computer or a laptop, to automatically dial into each site or node of the network so that a series of tests may be run at each of the sites. These series of tests may be configured as particular queries for each component at each site. After a query has been sent to a particular component, the communicative means waits to receive a response from that component. Depending on the response, the system determines automatically whether or not that component is operating effectively. Irrespective of whether a particular component is operationally effective, after the various components at a particular site have been queried and responses tallied, if there are problems found at the site, those problems are identified and provided as a report to the technicians and engineers of the network, thereby saving them from having to troubleshoot a malfunction from scratch. The presentation of the report may be in the form of a web page, so that a technician can readily retrieve the information from the Internet.
To test the myriad sites or nodes of a network, the system retrieves a list of telephone numbers from a data store. This list may be in the form of a flat file or a database file. Each telephone number in the list represents a particular node or site of the network. Once the list of telephone numbers is retrieved, the present invention system begins to dial connect to a first one of the telephone numbers in the list so as to communicatively connect to the site to which that telephone number corresponds.
For connection, a technician can simply dial connect by means of a plain old telephone system service (POTS) line and gain access to the site by means of a modem thereat. The modem in turn is connected to a switch box that, in receipt of the appropriate query or test signals, routes that query to the appropriate component at the site which may, for example, be a hub or a router. And depending on the query, a particular response is provided by the component and returned to the present invention system for recordation and analysis. If the response is deemed to be deficient, the system will generate an alert, in the form of a failure, to the appropriate personnel manning the system. Additional queries or test signals are also sent by the system to the other components in the site for testing the operational effectiveness of those components.
Once the components of a particular site all have been tested, or if it is found that one of the components of the site has responded in an unacceptable fashion, the system marks the site as containing equipment that may not be functional. The system then proceeds to retrieve a second telephone number from the list of telephone numbers, and dial connects to the site of that number in order to test the integrity of the various components at that site. The process continues until all of the of interest nodes or sites of the network have been tested, as the system goes through the list of telephone numbers retrieved from the data store.
After all of the of interest sites have been tested, the system generates a report detailing the operational effectiveness of the various sites and particularly the different components in each of those sites. The system can moreover retest those sites that the system has identified as being problematic. Thereafter, the process is reinitiated so that the functionality of the various sites of the network could be continuously monitored.
It is therefore an objective of the present invention to provide an automated process of testing the operational effectiveness of the various components or equipment in each node or site of a telecommunications network
It is another objective of the present invention to generate a report that identifies the particular problems for each component of the site of each network for the technicians and engineers who oversee the operations of the network, so that those technicians and engineers can readily and narrowly focus their attention to the problematic sites, and particularly the problem components within those sties.
It is moreover an objective of the present invention to provide a simple system for monitoring the operational effectiveness of the nodes of a data network without requiring any extraneous and unnecessary modifications to the various nodes of the network.
It is yet moreover another objective of the present invention to provide a testing system that is scalable so as to be adaptable for different types of networks, as the test signals or queries for each of the components of each node of the network can be customized.


REFERENCES:
patent: 5835566 (1998-11-01), Cowgill
patent: 5943391 (1999-08-01), Nordling
patent: 5946372 (1999-08-01), Jones et al.
patent: 5966427 (1999-10-01), Shaffer et al.
patent: 5987633 (1999-11-01), Newman et al.
patent: 6011838 (2000-01-01), Cox
patent: 6091713 (2000-01-01), Lechleider et al.
patent: 6041041 (2000-03-01), Ramanathan et al.
patent: 6052456 (2000-04-01), Huang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dial-up access response testing method and system therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dial-up access response testing method and system therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dial-up access response testing method and system therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2964128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.