Diagnostics for resistive elements of process devices

Data processing: measuring – calibrating – or testing – Calibration or correction system – Sensor or transducer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S001150, C073S001570, C324S649000

Reexamination Certificate

active

06754601

ABSTRACT:

BACKGROUND OF THE INVENTION
Process devices are used in processing plants to monitor process variables and control industrial processes. Process devices are generally remotely located from a control room and are coupled to process control circuitry in the control room by a process control loop. The process control loop can be a 4-20 mA current loop that powers the process device and provides a communication link between the process device and the process control circuitry. Examples of process devices include process transmitters used to measure temperature, pressure, flow, pH, turbidity, level, or other process variables and various process control devices.
Resistive elements are typically found in process devices. Resistive elements can be process variable sensors, wires, coils, resistive temperature detectors (RTD's), thermocouples, electrical traces, terminations, and other components of process devices having an electrical resistance. Generally, the condition of these resistive elements tends to degrade over time due to wear caused by use and environmental conditions that results in a decrease in performance. Depending on the resistive element, the decrease in performance may produce inaccurate measurements or cause the process device to fail. As a result, process devices are periodically tested to establish the condition of these resistive elements to determine whether measurements must be compensated or whether the resistive element must be replaced.
For example, temperature transmitters can use RTD's to measure the temperature of process fluids. An RTD is a resistive element having a temperature-dependent resistance. The RTD is placed in thermal communication with the process fluid and the temperature transmitter injects a current into the RTD. The resultant voltage drop across the RTD is used to calculate the resistance of the RTD. The temperature of the process fluid is determined from the resistance of the RTD. As the condition of the RTD deteriorates, its relationship between resistance and temperature changes thus reducing the accuracy of its measurements. Consequently, temperature transmitters store calibration information which is used to compensate for the changing properties of the RTD. The calibration information used by the transmitter is determined by calibrating the transmitter.
Present calibration techniques are generally conducted offline. These techniques involve testing the process measurement device on-site or at the location of the process measurement device. One such offline calibration technique is the plunge test. Here, the RTD or temperature sensor is removed from the process and placed in a bath of a known temperature. The output from the sensor is monitored and compared to the actual temperature of the bath to determine the amount of compensation required or calibration factor. The calibration factor is then stored in the processing system of the process device. The calibration factor is used to compensate the output of the process device such that the output accurately represents the temperature of the process medium being measured. Other offline calibration techniques involve injecting the resistive element with a test current and analyzing the response signal produced by the resistive element in response to the test current. These techniques generally utilize an additional power source due to the power limitations of the process device.
The above-mentioned calibration techniques are inadequate because they can require that the device be tested on-site, that the device be disassembled, and that an additional power supply be provided. Furthermore, process devices which are calibrated offline are unable to automatically compensate for the changing properties of a resistive element used by the process device. Instead, these calibration techniques must be performed periodically on the process device to ensure that the calibration information stored in the process device will accurately compensate for the degradation of the resistive element used by the process device.
SUMMARY
Diagnostic circuitry of a process device is used to detect degradation of a resistive element of the process device while the process device remains online, without the use of an additional power source. In addition, once degradation of the resistive element is detected, the diagnostic circuitry can be compensated for automatically. The diagnostic circuitry includes a testing circuit and a processing system. The testing circuit is coupled to the resistive element and is configured to apply a test signal to the resistive element. The test signal heats the resistive element and causes the resistive element to generate a response signal. The processing system compares a change in the response signal to a corresponding reference to detect degradation of the resistive element.


REFERENCES:
patent: 3096434 (1963-07-01), King
patent: 3404264 (1968-10-01), Kugler
patent: 3468164 (1969-09-01), Sutherland
patent: 3590370 (1971-06-01), Fleischer
patent: 3618592 (1971-11-01), Stewart et al.
patent: 3688190 (1972-08-01), Blum
patent: 3691842 (1972-09-01), Akeley
patent: 3701280 (1972-10-01), Stroman
patent: 3849637 (1974-11-01), Caruso et al.
patent: 3855858 (1974-12-01), Cushing
patent: 3952759 (1976-04-01), Ottenstein
patent: 3973184 (1976-08-01), Raber
patent: RE29383 (1977-09-01), Gallatin et al.
patent: 4058975 (1977-11-01), Gilbert et al.
patent: 4099413 (1978-07-01), Ohte et al.
patent: 4102199 (1978-07-01), Talpouras
patent: 4122719 (1978-10-01), Carlson et al.
patent: 4249164 (1981-02-01), Tivy
patent: 4250490 (1981-02-01), Dahlke
patent: 4279013 (1981-07-01), Cameron et al.
patent: 4337516 (1982-06-01), Murphy et al.
patent: 4399824 (1983-08-01), Davidson
patent: 4417312 (1983-11-01), Cronin et al.
patent: 4517468 (1985-05-01), Kemper et al.
patent: 4530234 (1985-07-01), Cullick et al.
patent: 4540468 (1985-09-01), Genco et al.
patent: 4571689 (1986-02-01), Hildebrand et al.
patent: 4630265 (1986-12-01), Sexton
patent: 4635214 (1987-01-01), Kasai et al.
patent: 4642782 (1987-02-01), Kemper et al.
patent: 4644479 (1987-02-01), Kemper et al.
patent: 4649515 (1987-03-01), Thompson et al.
patent: 4668473 (1987-05-01), Agarwal
patent: 4686638 (1987-08-01), Furuse
patent: 4707796 (1987-11-01), Calabro et al.
patent: 4720806 (1988-01-01), Schippers et al.
patent: 4736367 (1988-04-01), Wroblewski et al.
patent: 4736763 (1988-04-01), Britton et al.
patent: 4758308 (1988-07-01), Carr
patent: 4777585 (1988-10-01), Kokawa et al.
patent: 4791352 (1988-12-01), Frick et al.
patent: 4818994 (1989-04-01), Orth et al.
patent: 4831564 (1989-05-01), Suga
patent: 4841286 (1989-06-01), Kummer
patent: 4853693 (1989-08-01), Eaton-Williams
patent: 4873655 (1989-10-01), Kondraske
patent: 4907167 (1990-03-01), Skeirik
patent: 4924418 (1990-05-01), Bachman et al.
patent: 4934196 (1990-06-01), Romano
patent: 4939753 (1990-07-01), Olson
patent: 4964125 (1990-10-01), Kim
patent: 4988990 (1991-01-01), Warrior
patent: 4992965 (1991-02-01), Holter et al.
patent: 5005142 (1991-04-01), Lipchak et al.
patent: 5043862 (1991-08-01), Takahashi et al.
patent: 5053815 (1991-10-01), Wendell
patent: 5067099 (1991-11-01), McCown et al.
patent: 5081598 (1992-01-01), Bellows et al.
patent: 5083091 (1992-01-01), Frick et al.
patent: 5089979 (1992-02-01), McEachern et al.
patent: 5089984 (1992-02-01), Struger et al.
patent: 5098197 (1992-03-01), Shepard et al.
patent: 5099436 (1992-03-01), McCown et al.
patent: 5103409 (1992-04-01), Shimizu et al.
patent: 5111531 (1992-05-01), Grayson et al.
patent: 5121467 (1992-06-01), Skeirik
patent: 5122794 (1992-06-01), Warrior
patent: 5122976 (1992-06-01), Bellows et al.
patent: 5130936 (1992-07-01), Sheppard et al.
patent: 5134574 (1992-07-01), Beaverstock et al.
patent: 5137370 (1992-08-01), McCulloch et al.
patent: 5142612 (1992-08-01), Skeirik
patent: 5143452 (1992-09-01), Maxedon et al.
patent: 5148378 (1992-09-01), Shibayama et al.
patent: 5150289 (1992-09-01), Badavas
patent: 5167009 (1992-11-01), Skeirik
patent: 5175678 (1992-12-01), Frerichs et al.
patent: 5193143 (1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostics for resistive elements of process devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostics for resistive elements of process devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostics for resistive elements of process devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356495

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.