Diagnostic vibration data collector and analyzer

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Mechanical measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S001820

Reexamination Certificate

active

06484109

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to vibration monitoring equipment, and more particularly to a vibration data collector and analyzer with diagnostic capabilities.
BACKGROUND OF THE INVENTION
Vibration is produced by moving parts of machinery due to causes like unbalance, misalignment of shafts and worn out bearings. Every machine has reasonable levels of vibration that are characteristic of its operation. Excessive levels of vibration indicate machine problems which may lead to unsatisfactory operation and eventual breakdown.
Machine malfunction can sometimes be detected by a change in the vibration pattern of that machine. In today's plants where machines are complex and/or large in number, engineers rely on more advanced methods of identifying abnormal levels and patterns of vibration in order to determine the condition of a machine. It is now common to measure the level and rate of the vibrations of machines and use this data to determine which machines require servicing. This monitoring technique is called predictive maintenance.
To properly employ predictive maintenance, vibration data is typically taken and recorded on a scheduled basis during normal use of the machinery. There are a number of systems available for this purpose. Many of such systems are designed around a pool of portable data collectors. Each individual data collector is designed to be transported to a machine to be tested. Vibration data from the machine is collected, and the vibration data is subsequently uploaded to a host computer. The host computer analyzes the vibration data in order to provide a system operator with advanced diagnoses. See, for example, U.S. Pat. Nos. 5 4,885,707 and 4,612,620.
Although such conventional systems have been useful in the past, there have been a number of drawbacks associated with such systems. For example, the portable data collectors have been limited in their ability to analyze the vibration data locally. The system host computer was required to carry out advanced analysis of the data subsequent to receiving the data from the data collector. This could result in analysis delays, and could further result in missed opportunities for avoiding impending machine failure.
Furthermore, such conventional systems have tended to rely heavily on the host/client relationship between the system host computer/database and the individual data collectors. In addition to performing the complex data analysis, the system host computer was required to store the system data and to provide schedule information and/or lists of machines which require predictive maintenance to the individual data collectors. If the system host computer were to fail for any reason, the predictive maintenance system as a whole could be effectively shut down. In addition, there could be instances where a communication link between the host computer and one or more of the data collectors could not be established (e.g., due to limited accessibility to telephone lines, failed communications equipment, etc.). Such dependency on a system host computer could thus become an impediment to a smoothly functioning system.
In view of the aforementioned shortcomings associated with conventional data collectors and systems, there is a strong need in the art for a data collector and system which no longer is dependent on a system host computer. There is a strong need for a data collector which is capable of performing its own advanced/complex analyses of vibration data.
Moreover, there is a strong need for a data collector and system which can operate without a system host.
SUMMARY OF THE INVENTION
A diagnostic vibration data collector and analyzer is provided which incorporates an expert system within a portable computer such as a laptop or notebook type computer. The expert system analyzes vibration data acquired via a sensor coupled to the collector/analyzer in order to diagnose a condition of a machine under test. Several collector/analyzers may form part of a system in which peer to peer replication of data and information is performed so as to obviate the need for a central system host computer and/or data base. Such system may include one or more stationary computers also serving as peers.
According to one particular aspect of the invention, a system for performing predictive maintenance is provided. The system includes a plurality of portable data collector/analyzers operatively configured to communicate with one another; and at least one medium for permitting the plurality of portable data collector/analyzers to communicate with one another at least periodically. Each of the portable data collector/analyzers includes a transducer for being attached to a machine included among a plurality of machines, and for producing an output signal indicative of vibration of the machine; circuitry for conditioning the output signal and converting it to vibration data; a memory having a database stored therein, the database including vibration data obtained from the plurality of machines; and a database replication engine for replicating data in the database with data in the database of each of the other of the plurality of portable data collector/analyzers, via the at least one medium.
According to another aspect of the invention, a method for performing predictive maintenance is provided. The method includes the steps of employing a plurality of portable data collector/analyzers to collect vibration data from a plurality of machines, and storing vibration data collected locally by each of the plurality of portable data collector/analyzers in a corresponding database included in each of the plurality of portable data collector/analyzers; and at least periodically replicating the data included each database of the plurality of portable data collectors with the data included in each database of the others of the plurality of portable data collectors.
In accordance with yet another aspect of the invention, a portable data collector/analyzer is provided which includes a transducer for being attached to a machine in order to produce an output signal indicative of vibration of the machine; circuitry for conditioning the output signal and converting it to vibration data; a memory having a database stored therein, the database including vibration data obtained from the machine; and a database replication engine for replicating data in the database with data in a database of each of a plurality of other portable data collector/analyzers.
Still another aspect of the invention relates to a system for performing predictive maintenance. The system includes a plurality of portable data collector/analyzers operatively configured to communicate with one another; and at least one medium for permitting the plurality of portable data collector/analyzers to communicate with one another at least periodically. Each of the portable data collector/analyzers includes a transducer for being attached to a machine included among the plurality of machines, and for producing an output signal indicative of vibration of the machine; circuitry for conditioning the output signal and converting it to vibration data; a memory having a database stored therein, the database including vibration data obtained from the plurality of machines; a database replication engine for replicating data in the database with data in the database of each of the other of the plurality of portable data collector/analyzers, via the at least one medium; and an expert system for performing advance vibration data analysis of vibration data based on information stored in the database.
According to yet another aspect of the invention, a portable data collector/analyzer is provided which includes a transducer for being attached to a machine in order to produce an output signal indicative of vibration of the machine; circuitry for conditioning the output signal and converting it to vibration data; a memory for storing vibration data; and an expert system for performing advance vibration data analysis of vibration data stored in the memory.


REFERENCES:
patent: 5

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostic vibration data collector and analyzer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostic vibration data collector and analyzer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic vibration data collector and analyzer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2988848

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.