Diagnostic system and method for coronary artery disease and...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06328698

ABSTRACT:

BACKGROUND OF THE INVENTION
a) Field of the Invention
The present invention relates to a (acoustically non-invasive) diagnostic system for coronary artery disease and others with a complex-multiple sensor system, which is usable in a bedside, and a diagnostic method for coronary artery desease and others using the above diagnostic system, more particularly, a diagnostic system for coronary artery disease and others having a set of detectors which detects very minute vascular murmur such as coronary artery stenotic, diastolic and other murmur, and a diagnostic method for coronary artery desease and others using the diagnostic system.
b) Description of Prior Arts
It is regulated in the Japanese Industrial Standard that a phonocardiograph can detect a heart sound signal of the frequency between 20 to 600 Hz, and the heart sound signal is that vibration signal deriving from heart and blood vessel is transmitted to body surface, which contains cardiac murmur.
The phonocardiograph comprises a heart sound microphone, a eqalizer (in the case of using a direct conductive microphone like an accelerometer microphone or a velocity microphone), a heart sound recorder, an electrocardiograph and a power supply, and it records the heart sound signal and the electrocardiographic signal simultaneously.
There are an aerial conductive microphone and the direct conductive microphone containing the accelerometer microphone or the velocity microphone and others as the heart sound microphone, and the phonocardiograph having a vibration sensor(detective sensor) like the above-mentioned heart sound microphone, an amplifier, a wave filter and an indicator, is produced in accordance with the Japanese Industrial Standard. The measurement of the phonocardiograph in accordance with the Japanese Industrial Standard is for detecting actuation abnormality of a valve and existence of an intracardiac shunt. However, in regard to very minute signal deriving from coronary artery stenosis during diastole and having wide frequency band between 200 to 1200 Hz, it is impossible to match the acoustic impedance between the heart sound microphone and the body surface if the weight of the microphone is not 5 g and less and ideally 1 g. Therefore, it is impossible for the phonocardiograph in accordance with the Japanese Industrial Standard to detect the very minute acoustic vibration signal between 200 to 1200 Hz.
As above-mentioned,
1, In the conventional practice, the very minute vibration signal of which frequency band between 200 to 1200 Hz is out of the Japanese Industrial Standard, and the above signal is out of the frequency of the measured object of the phonocardiograph.
2, As the vibration intensity of such very minute vibration signal is very weak, it needs to be amplified over 100 dB in order to make the above signal to be the measured object. In the case of using an acoustic vibration sensor like an microphone and an accelerometer as the detective sensor of the phonocardiograph for the above amplification, the matching of the acoustic impedance between the sensor and the body surface cannot be taken since the weight of the sensor becomes over 200 g.
3, Though the sensor technology by the displacement gage principle is in the conventional practice, the satisfied detection cannot be carried out because the sensitivity is insufficient and the vibration signal of the object is buried in the noise.
4, A time resolution is also insufficient in the conventional practice using the vibration sensor such as a microphone by vibrating plate resonance or an accelerometer by charge generation based on enclosure resonance.
5, Though the phonocardiograph using the laser interferometer had not been devised, the object of this is the heart sound. There is no system which can perceive and detect the very minute displacement vibration signal like coronary artery stenotic, diastolic and other murmur.
SUMMARY OF THE INVENTION
The present invention has been made in view of the afore-described points of problem. It is therefore, a primary object of this invention to provide a (acoustically non-invasive) diagnostic system and method for coronary artery disease and others, which can detect the vibration signal of murmur deriving from the shape abnormality like stenosis of the blood vessel such as coronary artery being heart nutrition blood vessel, that is to say, detect the vibration signal of the murmur deriving from the stenosis of the coronary artery in its early stages, for it is possible to diagnose abnormal condition, prevent and treat heart disease and others.
According to the present invention, in one aspect thereof, there is provided a (acoustically non-invasive) diagnostic system for coronary artery disease and others comprising a detector of vibration signal of subject using pulsed laser beam, which is placed apart from the subject, and a detector of vibration signal of environmental noise, and vibration signal detected by the detector of vibration signal of subject and the detector of vibration signal of environmental noise is filtered for canceling internal noise and external noise, and the filtered vibration signal is amplified and recorded. That is to say, it comprises a complex-multiple vibration sensor system with a detector of vibration signal of subject using pulsed laser beam and a detector of vibration signal of environmental noise, and processing part which cancel internal noise of measuring instrument and external noise, amplify only the very minute vibration signal deriving from stenosis of coronary artery on body surface, and record the vibration signal as data.
According to the present invention, in another aspect thereof, there is provided a diagnostic system for coronary artery disease and others, which is characterized in that said detector of vibration signal of subject has one or a plurality of laser source head and vibration detective sensor with laser displacement gage and three-axial accelerometer. In this invention, perception and detection of stenotic vibration signal on body surface is conducted in noncontacting technique, and pulsed laser beam is used in vibration detective sensor for input vibration signal, which is harmless to skin. The laser source head is fixed to a support or is slided along the support and is incorporated in the sensor system.
According to the present invention, in further aspect thereof, there is provided a diagnostic system for coronary artery disease and others, which is characterized in that said detector of vibration signal of environmental noise has three-axial accelerometer and supersensitive microphone. That is to say, the detector of vibration signal of environmental noise has the three-axial accelermeter which detects vibration signal of environmental noise deriving from laser source head and a bed and others, which is incorporated in the complex-multiple sensor system. The supersensitive microphone is used to detect external noise deriving from measuring environment, which is fixed like such laser source head and is incorporated in the complex-multiple sensor system.
The complex-multiple sensor system comprises hardware including the deal of the internal noise deriving from these measuring instruments, which is a low-noise measuring system utilizing the detectors compound by optimization according to software utilizing measuring equation.
According to the present invention, in still further aspect thereof, there is provided a diagnostic method for coronary artery disease and others comprises the steps of detecting vibration signal by a detector of vibration signal of subject using pulsed laser beam which is placed apart from the subject and a detector of vibration signal of environmental noise, filtering said vibration signal to cancel internal noise and external noise, amplifying the filtered vibration signal and recording said filtered vibration signal. That is to say, the diagnostic method for coronary artery disease and others perceives and detects the very minute vibration signal of the murmur deriving from stenosis of coronary artery on the body surface in no

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostic system and method for coronary artery disease and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostic system and method for coronary artery disease and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic system and method for coronary artery disease and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588092

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.