Diagnostic system and method for a cooling system

Refrigeration – With indicator or tester – Operatively correlated with automatic control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S217000

Reexamination Certificate

active

06679072

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates generally to cooling systems, compressor control systems and refrigerant regulating valve control systems. More particularly, the invention relates to a refrigeration system employing a pulse width modulated compressor or evaporator stepper regulator controlled by a variable duty cycle signal derived from a load sensor. Preferably an adaptive controller generates the variable duty cycle signal. The compressor has two mechanical elements separated by a seal, and these mechanical elements are cyclically movable relative to one another to develop fluid pressure. The compressor includes a mechanism to selectively break the seal in response to the control signal, thereby modulating the capacity of the system.
The refrigeration system can be deployed as a distributed system in refrigeration cases and the like. The preferred arrangement allows the compressor and condenser subsystems to be disposed in or mounted on the refrigeration case, thereby greatly reducing the length of refrigerant conduit and refrigerant required.
Conventionally, refrigeration systems for supermarket refrigeration cases have employed air-cooled or water-cooled condensers fed by a rack of compressors. The compressors are coupled in parallel so that they may be switched on and off in stages to adjust the system cooling capacity to the demands of the load. Commonly, the condensers are located outside, on the roof, or in a machine room adjacent the shopping area where the refrigeration cases are located.
Within each refrigeration case is an evaporator fed by lines from the condensers through which the expanded refrigerant circulates to cool the case. Conventionally, a closed-loop control system regulates refrigerant flow through the evaporator to maintain the desired case temperature. Proportional-integral-derivative (PID) closed loop control systems are popular for this purpose, with temperature sensors and/or pressure sensors providing the sensed condition inputs.
It is common practice within supermarkets to use separate systems to supply different individual cooling temperature ranges: low temperature (for frozen foods, ice cream, nominally −25F.); medium (for meat, dairy products, nominally +20F.); high (for floral, produce, nominally +35 to +40F.). The separate low, medium and high temperature systems are each optimized to their respective temperature ranges. Normally, each will employ its own rack of compressors and its own set of refrigerant conduits to and from the compressors and condensers.
The conventional arrangement, described above, is very costly to construct and maintain. Much of the cost is associated with the long refrigerant conduit runs. Not only are long conduit runs expensive in terms of hardware and installation costs, but the quantity of refrigerant required to fill the conduits is also a significant factor. The longer the conduit run, the more refrigerant required. Adding to the cost are environmental factors. Eventually fittings leak, allowing the refrigerant to escape to atmosphere. Invariably, long conduit runs involve more pipefitting joints that may potentially leak. When a leak does occur, the longer the conduit run, the more refrigerant lost.
There is considerable interest today in environmentally friendly refrigeration systems. Shortening the conduit run is seen as one way to achieve a more environmentally friendly system. To achieve this, new condenser/compressor configurations and new control systems will need to be engineered.
Re-engineering condenser/compressor configurations for more environmentally friendly systems is not a simple task, because system efficiency should not be sacrificed. Generally, the conventional roof-mounted condenser system, supplied by condensers, benefits from economies of scale and is quite efficient. These systems serve as the benchmark against which more environmentally friendly systems of the future will need to be measured.
To appreciate why re-engineering an environmentally yet efficient system has proven so difficult, consider these thermodynamic issues. The typical refrigeration case operates in a very unpredictable environment. From a design standpoint, the thermal mass being cooled is rarely constant. Within the supermarket environment, the temperature and humidity may vary widely at different times of day and over different seasons throughout the year. The product load (items in the refrigeration case) can also change unpredictably. Customers removing product and store clerks replenishing product rarely synchronize. Outside the supermarket environment, the outdoor air temperature and humidity may also vary quite widely between day and night and/or between summer and winter. The capacity of the system must be designed for the harshest conditions (when the condenser environment is the hottest). Thus systems may experience excess capacity in less harsh conditions, such as in the cool evenings or during the winter.
Periodic defrosting also introduces thermal fluctuations into the system. Unlike thermal fluctuations due to environmental conditions, the thermal fluctuations induced by the defrost cycle are cause by the control system itself and not by the surrounding environment.
In a similar fashion, the control system for handling multiple refrigeration cases can induce thermal fluctuations that are quite difficult to predict. If all cases within a multi-case system are suddenly turned on at once—to meet their respective cooling demands—the cooling capacity must rapidly be ramped up to maximum. Likewise, if all cases are suddenly switched off, the cooling capacity should be ramped down accordingly. However, given that individual refrigeration cases may operate independently of one another, the instantaneous demand for cooling capacity will tend to vary widely and unpredictably.
These are all problems that have made the engineering of environmentally friendly systems more difficult. Adding to these difficulties are user engineering/ergonomic problems. The present day PID controller can be difficult to adapt to distributed refrigeration systems. Experienced controls engineers know that a well-tuned PID controller can involve a degree of artistry in selecting the proper control constants used in the PID algorithm. In a large refrigeration system of the conventional architecture (non-distributed) the size of the system justifies having a controls engineer visit the site (perhaps repeatedly) to fine tune the control constant parameters.
This may not be practical for distributed systems in which the components are individually of a much smaller scale and far more numerous. By way of comparison, a conventional system might employ one controller for an entire multi-case, store-wide system. A distributed system for the same store might involve a controller for each case or adjacent group of cases within the store. Distributed systems need to be designed to minimize end user involvement. It would therefore be desirable if the controller were able to auto configure. Currently control systems lack this capability.
The present invention provides a distributed refrigeration system in which the condenser is disposed on the refrigeration case and serviced by a special pulse width modulated compressor that may be also disposed within the case. If desired, the condenser and compressor can be coupled to service a group of adjacent refrigeration cases, each case having its own evaporator. The pulse width modulated compressor employs two mechanical elements, such as scroll members, that move rotationally relative to one another to develop fluid pressure for pumping the refrigerant. The compressor includes a mechanism that will selectively break the seal between the two mechanical elements, thereby altering the fluid pressure developed by the compressor while allowing the mechanical elements to maintain substantially constant relative movement with one another. The compressor can be pulse width modulated by making and breaking the fluid seal without the need to start and stop t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostic system and method for a cooling system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostic system and method for a cooling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic system and method for a cooling system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185854

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.