Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication
Reexamination Certificate
2001-02-05
2003-06-03
Nguyen, Tan Q. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Vehicle diagnosis or maintenance indication
C701S033000, C701S034000, C702S185000, C714S025000
Reexamination Certificate
active
06574537
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to diagnostic systems and methods and, more particularly, to diagnostic systems and methods for troubleshooting a complex system, such as an aircraft, to identify one or more components, such as one or more line replaceable units (LRUs) or lower level components, that has failed.
BACKGROUND OF THE INVENTION
Maintenance, including the reliable troubleshooting of complex systems, is a common issue in various industries, including the aircraft and automotive industries, the electronics industry and the like. In the aircraft industry, for example, maintenance of an aircraft is of paramount importance to ensure the continued safe and efficient operation of the aircraft. Aircraft maintenance can occur in several different manners. For example, scheduled maintenance generally includes a number of specific tasks, inspections and repairs that are performed at predetermined intervals. These events are scheduled in advance and rarely result in aircraft schedule interruption. In contrast, unscheduled maintenance is performed as required to maintain the aircraft's allowable minimum airworthiness during intervals between scheduled maintenance. Unscheduled maintenance is usually performed while the aircraft is on the ground between flights. However, unscheduled maintenance may be performed during a scheduled maintenance check if a mechanic identifies a problem that was not anticipated. Minimum ground time between flights is desirable to maximize airplane utilization and to meet the established flight schedules. Therefore, the time allocated to unscheduled maintenance is often limited to the relatively short time that the aircraft is required to be at the gate in order to permit passengers to unload and load, to refuel and to otherwise service the aircraft, all of which may take approximately 20 to 120 minutes on average depending on the aircraft type and route to be flown next.
As explained below, it is oftentimes difficult to complete the unscheduled maintenance in this timeframe, thereby leading to flight delays and/or cancellations. These flight delays and/or cancellations are extremely costly to an airline, both in terms of actual dollars and in terms of passenger perception. In this regard, an airline typically begins accruing costs related to a flight delay following the first five minutes of a delay, with substantial costs accruing if the flight must be cancelled. Moreover, as all air passengers are aware, airline dispatch reliability is a sensitive parameter that airlines often use to distinguish themselves from their competitors.
Notwithstanding the critical importance of properly performing unscheduled maintenance in both an accurate and timely manner, mechanics who perform the unscheduled maintenance on the flight line face a daunting challenge. In this regard, in addition to the time pressures described above, these mechanics are generally required to troubleshoot the aircraft based upon a limited amount of information that has been provided by the flight, cabin or maintenance crew or by onboard computers, sensors or the like. While troubleshooting any system based upon this limited information would be difficult, troubleshooting an aircraft which is an extremely large and complex system comprised of many interconnected subsystems is particularly difficult. In this regard, each subsystem is also typically comprised of a many LRUs that are designed to be individually replaced. An LRU may be mechanical, such as a valve or a pump; electrical, such as a switch or relay; or electronic, such as an autopilot or a flight management computer. Many LRUs are, in turn, interconnected. As such, the symptoms described by flight deck effects or other observations may indicate that more than one LRU can explain the presence of the observed symptoms. At that point, there is ambiguity about which LRU(s) have actually failed. Additional information will be needed to disambiguate between the possibilities.
A mechanic must therefore troubleshoot the problem to one or more suspect LRUs, with the number of LRUs preferably being minimized to prevent an excessive number of LRUs that are functioning properly from being replaced. A mechanic must then decide if the suspect LRU(s) must be immediately repaired or replaced prior to further flight of the aircraft or, if the repair or replacement of such LRU(s) may be safely deferred until the completion of the day's flights for the aircraft in order to avoid further delay of the aircraft. In this regard, a minimum equipment list (MEL) is generally maintained for each model of aircraft. The MEL indicates which components must be functioning properly in order for the aircraft to be cleared for takeoff. As such, a mechanic generally determines if any of the suspect LRUs are on the MEL and, if so, must repair or replace each suspect LRU that is on the MEL. If a suspect LRU must be immediately replaced, the mechanic removes the LRU, obtains a replacement LRU and installs the replacement LRU. If the subsystem is capable of being tested while the aircraft is on the ground, the mechanic then generally tests the subsystem to insure that the problem is corrected by the replacement LRU. Unfortunately, the more ambiguity there is between the suspect LRUs, the more difficult it is to single out the truly faulty LRUs and the more prone a mechanic is to want to replace all suspect parts, rather than continue to troubleshoot to disambiguate and narrow the field of suspect LRUs.
Following departure of the aircraft, the LRUs that have been removed are generally tested to determine if the LRUs are defective and, if so, which component(s) of the LRU failed. These tests frequently determine that many of the LRUs that are replaced are actually functioning properly. However, a mechanic, in his/her haste to return an aircraft to service, may skip tests that are necessary to refine the troubleshooting from a handful of suspect LRUs to a specific one or two suspect LRUs since the time required for the tests may cause the upcoming flight to be delayed or cancelled. As will be apparent, however, the replacement of LRUs that are actually functioning properly increases the costs to maintain the aircraft, both in terms of the cost of the parts and the labor. Additionally, the replacement of LRUs that are functioning properly may cause an excessive number of LRUs to be maintained in inventory, thereby also increasing inventory costs associated with the maintenance of the aircraft. As such, it would be desirable to improve the diagnosis ability and knowledge of ground crew mechanics and their ability to make decisions about how to streamline the diagnostic decision making process, i.e., by having a good understanding of the most cost effective and informative actions to take under various different circumstances.
A mechanic may be notified of a problem with an aircraft either while the aircraft is still in route or once the aircraft has landed. If a mechanic is notified while the aircraft is in route, the mechanic is provided with a description of the problems and other observations or symptoms noted by the flight or cabin crew so that the mechanic can begin the troubleshooting process prior to the arrival of the aircraft at the gate, thereby somewhat reducing any delays associated with the repair. More commonly, however, a mechanic is notified once the aircraft arrives at the gate that a problem has been identified by the flight, cabin or maintenance crew and is provided with a list of any observations or symptoms noted by the crew. In some instances, the mechanic may be able to obtain additional information related to the problem from various onboard computers, sensors or the like.
In a few instances involving common or repeated problems, an experienced mechanic may be able to immediately identify the suspect LRU based only upon the problem and the accompanying symptoms. Normally, however, the mechanic must work through a fairly complicated troubleshooting procedure which attempts to identify the suspect LRU(s) based u
Chew Susan Chan
Dildy Glenn A.
Kipersztok Oscar
Nelson Scott L.
Rein-Weston Karl J.
Alston & Bird LLP
Nguyen Tan Q.
The Boeing Company
LandOfFree
Diagnostic system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Diagnostic system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic system and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3146267