Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1999-08-06
2001-10-23
Jaworski, Francis J. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C128S916000
Reexamination Certificate
active
06306091
ABSTRACT:
REFERENCE TO MICROFICHE APPENDIX
A microfiche appendix is included of a computer program listing. The total number of microfiche is 1. The total number of frames is 26.
COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
FIELD OF THE INVENTION
This invention relates to medical diagnostic ultrasound systems and methods capable of constructing three-dimensional representations from disjoint two or three-dimensional image data sets of humans or animals. More particularly, this invention relates to ultrasound systems and methods which provide accurate three-dimensional reconstruction between any two ultrasonic data sets acquired by translating or rotating a transducer along one or more of the six degrees of freedom.
BACKGROUND
There is growing interest in three-dimensional ultrasonic imaging wherein a three dimensional volume is represented in two dimensions, such as on a video display. One approach to obtaining such images is to use a two-dimensional (“2D”) transducer array to obtain three-dimensional image information directly. A 2D array is used to scan electronically in any desired orientation, and thereby acquire the desired information. This approach has considerable problems related to fabrication difficulties, signal to noise difficulties and processing difficulties. Further, it is sometimes desired to obtain a three-dimensional image of a volume which is larger than the scan field of the 2D transducer.
Another approach to three-dimensional imaging is to collect multiple two-dimensional image data frames using a one-dimensional (“1D”) transducer array. These frames are subsequently assembled into the desired three-dimensional reconstruction using relative positional information. This approach is also used to scan multiple volumes with a 2D transducer. Multiple three-dimensional data sets are obtained and then subsequently assembled into a larger three-dimensional data set.
As the transducer is manually moved to collect the series of images, translation and rotation of the transducer may impart distortion from one image to the next. While mechanical systems have been developed to control transducer movement and image acquisition, such devices are usually cumbersome to operate and expensive to manufacture. Further, with both manual and mechanical transducer movement, perfectly aligned continuous frames of images are difficult to acquire. There are often gaps in the acquired data which represent gaps between successive frames. When the images are assembled into the three-dimensional volume, these gaps are filled by subsequent processing. To accurately fill these gaps, it is important to know the translation and rotation of the transducer and/or image plane from one image to the next.
Sensors on the transducer have been used to compute rotation and translation of the transducer to correct for the distortion. See for example “MULTIPLE ULTRASOUND IMAGE REGISTRATION SYSTEM, METHOD AND TRANSDUCER”, U.S. application Ser. Nos. 08/621,561 (filed Mar. 25, 1996), 08/807,498 (filed Feb. 27, 1997) and 08/916,585 (filed Aug. 22, 1997) to Hossack et al., assigned to the assignee of the present invention and U.S. Pat. No. 5,655,535 to Friemel et al., entitled 3-DIMENSIONAL COMPOUND ULTRASOUND FIELD OF VIEW, all of which are herein incorporated by reference. These references disclose methods of collecting ultrasonic image data and estimating the local displacement of a collection of data points in each image data set Once these local displacements are calculated, the images are then registered and assembled together to generate a 3D volume.
SUMMARY
By way of introduction, the preferred embodiments described below relate to an ultrasound system and method for accurately reconstructing three-dimensional image data sets from multiple two or three-dimensional image data sets. More particularly, the presently preferred embodiments relate to an improved ultrasound system and method utilizing affine transformations which adhere to a rigid body criterion. In a first preferred embodiment, quatemions are used to perform the affine transformation. In a second preferred embodiment, orthonormal matrices are used to perform the affine transformation. The resultant three-dimensional reconstructions are rendered more quickly, are more accurate and are less likely to be deformed or skewed.
REFERENCES:
patent: 5655535 (1997-08-01), Friemel et al.
patent: 5776067 (1998-07-01), Kamada et al.
patent: 5871013 (1999-02-01), Wainen et al.
patent: 5899861 (1999-05-01), Friemel et al.
patent: 5910114 (1999-06-01), Nock et al.
patent: 6064904 (2000-05-01), Yanof et al.
patent: 6106466 (2000-08-01), Sheehan et al.
patent: 6126600 (2000-10-01), Oxaal et al.
patent: WO 98/25509 (1998-06-01), None
J. A. Hossack, J. W. Sliwa, S. H. Maslak, E.A. Gardner, G.L. Holley, and D. J. Napolitano, “Multiple Ultrasound Image Registration System, Method and Transducer.”
J. D. Foley, A. van Dam, S.K. Feiner, and J. F. Hughes, eds., “Computer Graphics: Principles and Practive.” New York: Addison-Wesley, 1990.
B. K. P. Horn, “Closed-Form Solution of Absolute Orientation Using Unit Quaternions,” Journal of Optical Society of America A, vol. 4, pp. 629-642, Apr. 1987.
K. S. Arun, T.S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3D Point Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, No. 5, pp. 698-700, 1987.
B.K.P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-Form Solution of Absolute Orientation Using Orthonormal Matrices,” Journal of Optical Society of America A, vol. 5, pp. 1127-1135, Jul. 1988.
J. M. Fitzpatrick, J.B. West, and C.R. Maurer, “Predicting Error in Rigid-Body Point-Based Registration,” IEEE Transactions on Medical Imaging, vol. 15, pp. 694-702, Oct. 1998.
C. M. Brown, “Some Computational Properties of Rotation Representations,” Technical Report 303, University of Rochester, Department of Computer Science, Aug. 23, 1989.
Hossack John A.
Sumanaweera Thilaka S.
Acuson Corporation
Brinks Hofer Gilson & Lione
Jaworski Francis J.
LandOfFree
Diagnostic medical ultrasound systems and methods utilizing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Diagnostic medical ultrasound systems and methods utilizing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic medical ultrasound systems and methods utilizing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2613989