Diagnostic and therapeutic detector system for imaging with...

Electric lamp and discharge devices – Photosensitive – Plural secondary emissive electrodes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S1030CM, C313S1050CM, C250S374000, C250S385100

Reexamination Certificate

active

06429578

ABSTRACT:

The present invention relates to a general X-ray and electron imaging device, particularly useful for verification, control and optimization of radiation treatment of cancer as well as for applications like diagnostic X-rays, non-destructive testing and screening of containers and vehicles in airports and in customs. More particularly it relates to a detector system with high efficiency over a wide range of photon and electron energies, from diagnostic X-rays starting from the low energies of a few keV all the way up to a hundred MeV, i.e. energies that are of interest and used in radiation therapy or for imaging of large and/or dense objects.
BACKGROUND OF THE INVENTION
Real time electronic detectors have during the last 30 years revolutionized many areas of X-ray imaging. This includes diagnostic modalities like computed tomography for detailed imaging of the human head and body as well as image intensifiers and video techniques for imaging of the cardiovascular system and for airport security. There are several advantages with real time electronic detectors including improved detection efficiency, wider dynamic range and instantaneous response. Digital images also allow immediate display, electronic storage, diagnosis through telecommunication and computer-aided detection, on-one image enhancement and diagnosis. In spite of the obvious advantages with digital imaging it has turned out to be very hard to replace current film-screen combinations in applications demanding high spatial resolution over large areas, in particular when constraints like high tolerance to radiation damage and reasonable cost are added. Despite its advantages film has a number of disadvantages such as low efficiency, limited dynamic range, noise and the need for chemical development.
The working principle of the present range of electronic detectors is that photons transmitted through the irradiated object are converted to electrons through electromagnetic interactions. Those electrons are in some devices collected directly by dedicated sensors or they are guided through some fluorescent material where secondary light is created and this light is in turn detected by a sensor like e.g. a CCD. In imaging devices for higher X-ray energies, a special converter is added in front of the detector to increase the probability for electromagnetic interaction of the X-rays. This is needed to increase the efficiency of the devices since higher energy X-rays are much more penetrating and would otherwise pass the detector undetected. The converter is usually made as a thin plate of some heavy metal like copper or iron, but molybdenum, chromiun or tungsten are equally suitable. In principle any material could be used, but the efficiency of the device will increase with increasing atomic number. Thus, an atomic number greater than 20 is preferable.
For the purpose of this application the term “electromagnetic interactions” should be taken to encompass all physical interactions between photons and matter that causes generation of at least an electron, i.e. via Compton effect, pair-production or photo electric effect.
The term “conversion” is meant to encompass any process involving a photon, wherein some or all of the energy of that photon is transferred to some other corpuscle and wherein a free electron is produced as a result of said energy transfer. Thus, a “converter” is any device capable of producing this effect. It could simply be a gas enclosed in a volume, wherein incident photons interact with the gas in the photo-electric effect to produce electrons. It can also be a sheet or other type of structure of a solid material, in which electrons are generated via the Compton effect or by pair production (electron—positron generation).
“Amplification” is to be construed as a process where one electron interacts with atoms or molecules of a gas thereby causing ionization thereof to produce a plurality of electrons and “holes” (positive gas ions). Thus, “amplification” is meant to encompass both primary ionization regardless of whether there is an electric field present or not, as well as the well known avalanche fenomenon that occurs in electric fields of the order of 10
4
V/m or more.
Thus, an “amplifier” will encompass any structure that causes such “amplification” it could e.g. simply be a gas enclosed in a volume where incident electrons will interact with the gas, or a more complex device where an electric field is generated.
Radiation therapy and surgery remain the main modalities for cancer cure in the industrialized world. Radiation therapy is used for more than half of the new cancers with permanent cradication of the tumor without severe complications in more than half of the cases. The radiation dose is delivered to the patient in different fractions, one fraction a day over a period of a couple of weeks. Alignment of the radiation field relative to the tumor is of paramount importance. The alignment has to be particularly accurate when intensity modulation is used and the tumor is close to sensitive organs like the spinal cord. Positioning errors should by no means exceed 2 to 5 mm depending on treatment site. Monitoring and controlling the treatment with a detector behind the patient is usually referred to as portal imaging. More recently, it has been shown that a correction of the patient set-up using the information from an Electronic Portal Imaging Device (EPID) increases the probability of a complication free tumor cure in the order of 10%. However, as already indicated, film still remains the most common tool for verification and quality control of the treatment and is used in more than 90% of the cases. The EPID's has proven valuable since digital images allow electronic storage and processing of the data. They also in principle enable an on-line control and verification of the treatment even if this is difficult because of the low efficiency of the present EPID's and the corresponding relatively long times for data acquisition. They also facilitate an adaptive real time control during the course of delivery of the different fractions of the treatment. In portal imaging, it is obvious that the detectors need to be highly radiation tolerant and this is a severe constraint one has to take into account when designing the detector.
There are two main types of EPID systems available commercially today: One is a mirror-based video system and the second is an electronically scanned liquid-ionization chamber system. In both cases, the incident photons are converted to electrons with an efficiency of about 5%-8% through interactions in a metal plate, typically 1.5 mm of copper. If the metal is made thicker, scattering of the electrons in secondary reactions is becoming a problem and electrons will stop in the metal. The typical range for 1 MeV electrons in Cu is less than 0.7 mm. This range is approximately proportional to the energy of the electrons. This puts a fundamental limit on the obtainable efficiency for these devices. Both approaches have proven valuable in localizing the patient in the radiation field and verification of the radiation therapy. A major drawback is that the contrast and quality of the resulting images only makes the bone structure visible and not internal organs and the tumor itself, the exact position of these organs remains unknown. The only way of being sure about these positions would be diagnostic X-ray images taken with the patient in the actual treatment position, without movement of the patient and right before the actual treatment starts since any movement would cause change in position of the internal organs. Unfortunately existing EPID's are almost insensitive to X-rays of diagnostic energies.
The main specific drawback with the video system is its low efficiency due to loss of photons in the process of de-magnifying the fluorescent screen through a mirror, lens or fiber optic taper to the camera. This efficiency is in fact less than 0.01%. Another problem is the inherent bulkiness of the system that may hamper patient set-up and make them difficult t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostic and therapeutic detector system for imaging with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostic and therapeutic detector system for imaging with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic and therapeutic detector system for imaging with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2966933

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.