Surgery – Instruments – Sutureless closure
Reexamination Certificate
1998-02-10
2001-10-16
Jackson, Gary (Department: 3331)
Surgery
Instruments
Sutureless closure
C606S213000
Reexamination Certificate
active
06302898
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a vessel closure device, and more particularly to a device for effecting the closure of a vessel by delivering a fluent closure composition precursor and converting the composition in situ to a non-fluent closure composition.
BACKGROUND OF THE INVENTION
A wide variety of surgical procedures are performed by the introduction of a catheter into a vessel. After the surgical procedure is completed, closure of the vessel at the site where the catheter was introduced is needed. Vessel punctures formed in the process of performing a catheter based surgical procedure are commonly 1.5 mm to 7.0 mm in diameter and can be larger. Closure of these punctures is frequently complicated by anticoagulation medicine given to the patient which interferes with the body's natural clotting abilities.
Closure of a vessel puncture has traditionally been performed by applying pressure to the vessel adjacent the puncture site. This procedure requires the continuous attention of at least one medical staff member to apply pressure to the vessel puncture site and can take as long as 30 minutes.
Devices have been developed for effecting the closure of vessel punctures through the application of energy. See U.S. Pat. Nos. 5,626,601; 5,507,744; 5,415,657; and 5,002,051. Devices have also been developed for effecting the closure of vessel punctures through the delivery of a mechanical mechanism which mechanically seals the puncture. See U.S. Pat. Nos.: 5,441,520; 5,441,517; 5,306,254; 5,282,827; and 5,222,974. Devices have also been developed for effecting the closure of vessel punctures through the delivery of a composition to block the vessel puncture. See U.S. Pat. Nos.5,601,602; 5,591,205; 5,441,517; 5,292,332; 5,275,616; 5,192,300; and 5,156,613. Despite the various devices that have been developed for closing vessel punctures, a need still exists for a simple, safe and inexpensive device and method for closing vessel punctures.
SUMMARY OF THE INVENTION
The present invention relates to a device and method for sealing a puncture in a body vessel. In one embodiment, the device has an elongated body having a proximal end and a distal end sized to be positioned within a lumen of the body vessel; at least one closure composition precursor lumen within the elongated body having a entrance port adjacent the proximal end of the elongated body through which one or more fluent closure composition precursors can be delivered into the closure composition precursor lumen and an exit port adjacent the distal end of the elongated body through which the one or more fluent closure composition precursors can be delivered outside the vessel adjacent the vessel puncture; and at least one position sensing mechanism positioned distal relative to the exit port such that the exit port is outside the vessel when the at least one position sensing mechanism is detected to be outside the vessel.
The closure device of this embodiment may optionally further include an energy delivery device for delivering energy adjacent the distal end of the elongated body to the fluent closure compound precursor. In one variation, the device includes a microwave antenna for delivering microwave energy adjacent the distal end of the elongated body to the fluent closure compound precursor. In another variation, the device includes a waveguide for delivering light energy adjacent the distal end of the elongated body to the fluent closure compound precursor. In yet another variation, the device includes a RF electrode for delivering RF energy adjacent the distal end of the elongated body to the fluent closure compound precursor.
In another embodiment, the device includes an elongated body having a proximal end and a distal end sized to be positioned within a lumen of the body vessel; at least one closure composition precursor lumen within the elongated body having a entrance port adjacent the proximal end of the elongated body through which one or more fluent closure composition precursors can be delivered into the closure composition precursor lumen and an exit port adjacent the distal end of the elongated body through which the one or more fluent closure composition precursors can be delivered outside the vessel adjacent the vessel puncture; and a microwave antenna for delivering microwave energy adjacent the distal end of the elongated body to the fluent closure compound precursor. The microwave antenna according to this embodiment is preferably incorporated onto the elongated body adjacent the body distal end.
In another embodiment, the device includes an elongated body having a proximal end and a distal end sized to be positioned within a lumen of the body vessel; at least one closure composition precursor lumen within the elongated body having a entrance port adjacent the proximal end of the elongated body through which one or more fluent closure composition precursors can be delivered into the closure composition precursor lumen and an exit port adjacent the distal end of the elongated body through which the one or more fluent closure composition precursors can be delivered outside the vessel adjacent the vessel puncture; a guidewire lumen within the elongated body; and a guidewire including microwave antenna for delivering microwave energy adjacent the distal end of the elongated body to the fluent closure compound precursor.
The present invention also relates to a method for sealing a puncture in a body vessel. In one embodiment, the method includes the steps of delivering a distal end of an elongated body into a lumen of the body vessel, the elongated body having at least one closure composition precursor lumen with a entrance port adjacent the proximal end of the elongated body through which one or more fluent closure composition precursors can be delivered into the closure composition precursor lumen and an exit port adjacent the distal end of the elongated body through which the one or more fluent closure composition precursors can be delivered outside the vessel adjacent the vessel puncture, and at least one position sensing mechanism positioned distal relative to the exit port such that the exit port is outside the vessel when the at least one position sensing mechanism is detected to be outside the vessel; withdrawing the elongated body until the at least one position sensing mechanism is positioned outside the vessel lumen; delivering one or more fluent closure composition precursors outside the vessel adjacent the vessel puncture; and transforming the one or more fluent closure composition precursors into a non-fluent closure composition which seals the vessel puncture.
In one variation, the method further includes the step of delivering energy adjacent the distal end of the elongated body to the fluent closure compound precursor to transform the one or more fluent closure composition precursors into the non-fluent closure composition. The energy may be microwave energy and the at least one of the one or more fluent closure composition precursors may optionally include a microwave energy absorbing material.
The present invention also relates to a non-fluent closure composition for closing a puncture in a vessel. In one embodiment, the non-fluent closure composition is formed by delivering a fluent closure composition precursor to a position outside the vessel adjacent to the puncture; and transforming the fluent closure composition precursor in situ to a non-fluent closure composition. In another embodiment, the non-fluent closure composition is formed by delivering two or more fluent closure composition precursors to a position outside the vessel adjacent to the puncture; and mixing the two or more fluent closure composition precursors to form a non-fluent closure composition in situ adjacent the vessel puncture.
Transforming the fluent closure composition precursor in situ may include solidifying the closure composition precursor or causing the closure composition precursor to chemically react with itself to form a non-fluent composition, the chemical reaction optionally being c
Edwards Stuart D.
Evans John
Kucklick Theodore
Parker Theodore L.
Skalnyi Eugene V.
Advanced Closure Systems, Inc.
Jackson Gary
Ryan Kromholz & Manion S.C.
Trinh Vikki
LandOfFree
Devices for sealing punctures in body vessels does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Devices for sealing punctures in body vessels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices for sealing punctures in body vessels will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2584491