Surgery – Instruments – Electrical application
Reexamination Certificate
2001-09-04
2004-03-30
Peffley, Michael (Department: 3739)
Surgery
Instruments
Electrical application
Reexamination Certificate
active
06712812
ABSTRACT:
FIELD OF THE INVENTION
The invention is directed to devices for altering gaseous flow within a lung to improve the expiration cycle of an individual, particularly individuals having Chronic Obstructive Pulmonary Disease (COPD). More particularly, devices are disclosed to produce collateral openings or channels through the airway wall so that oxygen depleted/carbon dioxide rich air is able to pass directly out of the lung tissue to facilitate both the exchange of oxygen ultimately into the blood and/or to decompress hyper-inflated lungs.
BACKGROUND OF THE INVENTION
The term “Chronic Obstructive Pulmonary Disease” (COPD) is generally used to describe the disorders of emphysema and chronic bronchitis. Previously, COPD was also known as Chronic Obstructive Lung Disease (COLD), Chronic Airflow Obstruction (CAO), or Chronic Airflow Limitation (CAL). Some also consider certain types of asthma to fall under the definition of COPD. Emphysema is characterized by an enlargement of air spaces inside the lung. Hence, emphysema is an anatomic definition and it can only be presumed in a living patient. Chronic bronchitis is characterized by excessive mucus production in the bronchial tree. Chronic bronchitis is a clinical definition and denotes those individuals who meet criteria defining the disease. It is not uncommon for an individual to suffer from both disorders.
In 1995, the American Lung Association (ALA) estimated that between 15-16 million Americans suffered from COPD. The ALA estimated that COPD was the fourth-ranking cause of death in the U.S. The ALA estimates that the rates of emphysema is 7.6 per thousand population, and the rate for chronic bronchitis is 55.7 per thousand population.
Those inflicted with COPD face disabilities due to the limited pulmonary functions. Usually, individuals afflicted by COPD also face loss in muscle strength and an inability to perform common daily activities. Often, those patients desiring treatment for COPD seek a physician at a point where the disease is advanced. Since the damage to the lungs is irreversible, there is little hope of recovery. Most times, the physician cannot reverse the effects of the disease but can only offer treatment and advice to halt the progression of the disease.
To understand the detrimental effects of COPD, the workings of the lungs requires a cursory discussion. The primary function of the lungs is to permit the exchange of two gasses by removing carbon dioxide from venous blood and replacing it with oxygen. Thus, to facilitate this exchange, the lungs provide a blood gas interface. The oxygen and carbon dioxide move between the gas (air) and blood by diffusion. This diffusion is possible since the blood is delivered to one side of the blood-gas interface via small blood vessels (capillaries). The capillaries are wrapped around numerous air sacs called alveoli which function as the blood-gas interface. A typical human lung contains about 300 million alveoli.
The air is brought to the other side of this blood-gas interface by a natural respiratory airway, hereafter referred to as a natural airway or airway, consisting of branching tubes which become narrower, shorter, and more numerous as they penetrate deeper into the lung. Specifically, the airway begins with the trachea which branches into the left and right bronchi which divide into lobar, then segmental bronchi. Ultimately, the branching continues down to the terminal bronchioles which lead to the alveoli. Plates of cartilage may be found as part of the walls throughout most of the airway from the trachea to the bronchi. The cartilage plates become less prevalent as the airways branch. Eventually, in the last generations of the bronchi, the cartilage plates are found only at the branching points. The bronchi and bronchioles may be distinguished as the bronchi lie proximal to the last plate of cartilage found along the airway, while the bronchiole lies distal to the last plate of cartilage. The bronchioles are the smallest airways that do not contain alveoli. The function of the bronchi and bronchioles is to provide conducting air ways that lead inspired air to the gas-blood interface. However, these conducting airways do not take part in gas exchange because they do not contain alveoli. Rather, the gas exchange takes place in the alveoli which are found in the distal most end of the airways.
The mechanics of breathing include the lungs, the rib cage, the diaphragm and abdominal wall. During inspiration, inspiratory muscles contract increasing the volume of the chest cavity. As a result of the expansion of the chest cavity, the pleural pressure, the pressure within the chest cavity, becomes sub-atmospheric with respect to the pressure at the airway openings. Consequently, air flows into the lungs causing the lungs to expand. During unforced expiration, the expiratory muscles relax and the lungs begin to recoil and reduce in size. The lungs recoil because they contain elastic fibers that allow for expansion, as the lungs inflate, and relaxation, as the lungs deflate, with each breath. This characteristic is called elastic recoil. The recoil of the lungs causes alveolar pressure to exceed the pressure at airway openings causing air to flow out of the lungs and deflate the lungs. If the lungs' ability to recoil is damaged, the lungs cannot contract and reduce in size from their inflated state. As a result, the lungs cannot evacuate all of the inspired air.
Emphysema is characterized by irreversible damage to the alveolar walls. The air spaces distal to the terminal bronchiole become enlarged with destruction of their walls which deteriorate due to a bio-chemical breakdown. As discussed above, the lung is elastic, primarily due to elastic fibers and tissues called elastin found in the airways and air sacs. If these fibers and tissues become weak the elastic recoil ability of the lungs decreases. The loss of elastic recoil contributes to more air entering the air sacs than can exit preventing the lungs from reducing in size from their inflated state. Also, the bio-chemical breakdown of the walls of the alveolar walls causes a loss of radial support for airways which results in a narrowing of the airways on expiration.
Chronic bronchitis is characterized by excessive mucus production in the bronchial tree. Usually there is a general increase in bulk (hypertrophy) of the large bronchi and chronic inflammatory changes in the small airways. Excessive amounts of mucus are found in the airways and semisolid plugs of this mucus may occlude some small bronchi. Also, the small airways are usually narrowed and show inflammatory changes.
In COPD, a reduction in airflow arises as a result of 1) partial airway occlusion by excess secretions, 2) airway narrowing secondary to smooth muscle contraction, bronchial wall edema and inflation of the airways, and 3) reduction in both lung elasticity and tethering forces exerted on the airways which maintain patency of the lumen. As a result of the COPD, the airways close prematurely at an abnormally high lung volume. As mentioned above, in an emphysematous lung there is a decrease of lung parenchyma as there are larger and fewer air sacs. Thus, there is a decrease in the amount of parenchymal tissue which radially supports the airways. This loss of radial traction allows the airway to collapse more easily. As lung recoil decreases and airway closure occurs at higher lung volumes, the residual volume of gas in the lung increases. Consequently, this increased residual gas volume interferes with the ability of the lung to draw in additional fresh gas during inspiration. As a result, a person with advanced COPD can only take short shallow breaths.
One aspect of an emphysematous lung is that the flow of air between neighboring air sacs, known as collateral ventilation, is much more prevalent as compared to a normal lung. Yet, while the resistance to collateral ventilation may be decreased in an emphysematous lung the decreased resistance does not assist the patient in breathing due to the inability of the gasses to enter and exit the lung
Haugaard Dave
Keast Thomas
Roschak Ed
Tanaka Don
Bagade Sanjay S.
Broncus Technologies, Inc.
Peffley Michael
LandOfFree
Devices for creating collateral channels does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Devices for creating collateral channels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices for creating collateral channels will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3270220