Devices and methods for the performance of miniaturized in...

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S286500, C435S287300, C435S288500, C435S288700, C422S064000, C422S082080

Reexamination Certificate

active

06706519

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods and apparatus for performing microanalytic and microsynthetic analyses and procedures. In particular, the invention relates to microminiaturization of genetic, biochemical and bioanalytic processes. Specifically, the present invention provides devices and methods for the performance of integrated and miniaturized sample preparation, nucleic acid amplification, and nucleic acid detection assays. These assays may be performed for a variety of purposes, including but not limited to forensics, life sciences research, and clinical and molecular diagnostics. The invention may be used on a variety of liquid samples of interest, including bacterial and cell cultures as well as whole blood and processed tissues. Methods for performing any of a wide variety of such microanalytical or microsynthetic processes using the Microsystems apparatus of the invention are also provided.
2. Background of the Related Art
Extraction and isolation of DNA from host cells is a cornerstone of modern molecular biology. One type of DNA, bacterial plasmid DNA has been particularly useful as a convenient vector for the insertion of genetic material into bacterial, yeast and mammalian cells. DNA isolated from an organism is inserted by being contiguously and covalently linked to plasmid DNA and is then introduced into a cell, such as a bacterial cell, and allowed to multiply, thereby creating large copy numbers of the plasmid in each cell. These plasmids may advantageously be harvested to provide a sufficient amount of DNA (typically on the order of several micrograms, although up to milligram quantities can be produced on an industrial scale) for a variety of experimental or therapeutic purposes. The harvesting of plasmid DNA, defined as its removal from cells and isolation from the genomic DNA content of the cells, has growing utility in life sciences research, diagnostics, therapeutics and other applications.
Currently, the extraction and isolation of DNA is either performed manually or through the use of robotic sample preparation stations. In either case, a variety of technologies and materials are used (see, for example, QIAamp DNA Mini Kit and QIAamp DNA Blood Mini Kit Handbook, 1999, Qiagen GmbH, Max-Volmer-Strasse 4, 40724 Hildren, Germany; Birnboim & Doly, 1979
, Nucl. Acids Res
. 7: 1513-1522). Typically, cells are first incubated in a surfactant (detergent) solution, in some cases containing protein digesting enzymes such as Protease or Proteinase K. These lyse the cells, thereby releasing the DNA into solution. This is frequently performed under alkaline conditions, to destabilize nucleases and hydrolyze contaminating RNA. The DNA must then be separated from other cell constituents, which is performed using a number of different separation protocols, including, for example, selective precipitation of proteins and other cell debris, organic chemical extraction (using phenol and chloroform), and DNA affinity column chromatography. Plasmid DNA must also be isolated from contaminating cellular (bacterial genomic DNA). Filtration methods can produce a plasmid DNA solution, but the solutions required to solvate DNA are usually inappropriate for the desired final application of the DNA. As a consequence, plasmid DNA is removed from these solutions by ethanol precipitation, or solid-phase separation is used, which often requires further changes in solvent pH and salt concentration (especially for affinity binding methods using glass or silica). The technologies required for these steps include pipetting, pumping, filtration, washing, and centrifugation, requiring an expensive suite of devices and skilled operators thereof. The additional requirements of automated systems include sample transfer and robotics for the handling of sample containers.
This discussion illustrates the need in the art for more efficient, rapid, inexpensive automated methods and devices for performing DNA sample preparation, particularly plasmid DNA preparation.
In the field of integrated genetic analysis, some progress has been made in the integration of sample preparation, PCR, and detection via real-time fluorescence or hybridization methods (Anderson et al., 1998, “Advances in Integrated Genetic Analysis,” in
Proc. Micro Total Analysis
'98, Harrison & van den Berg, eds., Kluwer: Amsterdam, pp.11-16). These systems rely on macroscopic fluid handling systems such as pumps and valves that must be interfaced with the microfluidic devices within which fluids are processed.
However, there exists a need for devices and methods capable of processing cell cultures for harvesting DNA, particularly plasmid DNA.
In the biological and biochemical arts, analytical procedures frequently require incubation of biological samples and reaction mixtures at temperatures greater than ambient temperature. Moreover, many bioanalytical and biosynthetic techniques require incubation at more than one temperature, either sequentially or over the course of a reaction scheme or protocol.
One example of such a bioanalytical reaction is the polymerase chain reaction. The polymerase chain reaction (PCR) is a technique that permits amplification and detection of nucleic acid sequences. See U.S. Pat. Nos. 4,683,195 to Mullis et al. and 4,683,202 to Mullis. This technique has a wide variety of biological applications, including for example, DNA sequence analysis, probe generation, cloning of nucleic acid sequences, site-directed mutagenesis, detection of genetic mutations, diagnoses of viral infections, molecular “fingerprinting,” and the monitoring of contaminating microorganisms in biological fluids and other sources. The polymerase chain reaction comprises repeated rounds, or cycles, of target denaturation, primer annealing, and polymerase-mediated extension; the reaction process yields an exponential amplification of a specific target sequence.
Methods for miniaturizing and automating PCR are desirable in a wide variety of analytical contexts, particularly under conditions where a large multiplicity of samples must be analyzed simultaneously or when there is a small amount of sample to be analyzed.
In addition to PCR, other in vitro amplification procedures, including ligase chain reaction as disclosed in U.S. Pat. No. 4,988,617 to Landegren and Hood, are known and advantageously used in the prior art. More generally, several important methods known in the biotechnology arts, such as nucleic acid hybridization and sequencing, are dependent upon changing the temperature of solutions containing sample molecules in a controlled fashion. Automation and miniaturization of the performance of these methods are desirable goals in the art.
Mechanical and automated fluid handling systems and instruments produced to perform automated PCR have been disclosed in the prior art.
U.S. Pat. No. 5,304,487, issued Apr. 19, 1994 to Wilding et al. teach fluid handling on microscale analytical devices.
International Application, Publication No. WO93/22053, published Nov. 11, 1993 to University of Pennsylvania disclose microfabricated detection structures.
International Application, Publication No. WO93/22058, published Nov. 11, 1993 to University of Pennsylvania disclose microfabricated structures for performing polynucleotide amplification.
Wilding et al., 1994
, Clin. Chem
. 40: 43-47 disclose manipulation of fluids on straight channels micromachined into silicon.
Kopp et al., 1998
, Science
280: 1046 discloses microchips for performing in vitro amplification reactions using alternating regions of different temperature.
One drawback of the synthetic microchips disclosed in the prior art for performing PCR and other temperature-dependent bioanalytic reactions has been the difficulty in designing systems for moving fluids on the microchips through channels and reservoirs having diameters in the 10-100 &mgr;m range. This is due in part to the need for high-pressure pumping means for moving fluid through the small sizes of the components of these microchips. These disabilities of the pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices and methods for the performance of miniaturized in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices and methods for the performance of miniaturized in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices and methods for the performance of miniaturized in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3243334

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.