Devices and methods for preventing distal embolization using...

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06830579

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to devices and methods useful in treating patients with stroke or occlusive cerebrovascular disease. More specifically, the invention provides an extracranial device capable of reversing flow down a vertebral artery, an internal carotid artery, an external carotid artery and/or a common carotid artery, and into the subclavian artery during an invasive procedure, thereby avoiding distal embolization of vascular debris. Various diagnostic or therapeutic instruments, including an angioplasty catheter, stent deployment catheter, atherectomy catheter, and/or a filter, can be introduced through the device for treating the occlusion. The invention may also be useful to reverse flow and pull back embolic debris during a stroke.
BACKGROUND OF THE INVENTION
Stroke is the third most common cause of death in the United States and the most disabling neurologic disorder. Approximately 700,000 patients suffer from stroke annually. Stroke is a syndrome characterized by the acute onset of a neurological deficit that persists for at least 24 hours, reflecting focal involvement of the central nervous system, and is the result of a disturbance of the cerebral circulation. When a patient presents neurological symptoms and signs that resolve completely within 1 hour, the term transient ischemic attack (TIA) is used. Etiologically, TIA and stroke share the same pathophysiologic mechanisms and thus represent a continuum based on persistence of symptoms and extent of ischemic insult.
Outcome following stroke is influenced by a number of factors, the most important being the nature and severity of the resulting neurologic deficit. Overall, less than 80% of patients with stroke survive for at least 1 month, and approximately 35% have been cited for the 10-year survival rates. Of patients who survive the acute period, up to 75% regain independent function, while approximately 15% require institutional care.
Hemorrhagic stroke accounts for 20% of the annual stroke population. Hemorrhagic stroke often occurs due to rupture of an aneurysm or arteriovenous malformation bleeding into the brain tissue, resulting in cerebral infarction. The remaining 80% of the stroke population are hemispheric ischemic strokes and are caused by occluded vessels that deprive the brain of oxygen-carrying blood. Ischemic strokes are often caused by emboli or pieces of thrombotic tissue that have dislodged from other body sites or from the cerebral vessels themselves to occlude the narrow cerebral arteries more distally. The extracranial or intracranial internal carotid artery, commonly affected by atherosclerosis causing symptomatic occlusion in the arterial lumen, is often responsible for hemispheric ischemic stroke and generating thromboembolic material downstream to the distal cerebral vessels. Proposed treatment of the occluded carotid artery in patients with stroke and TIA, or for stroke prevention in patients with asymptomatic flow limiting carotid stenosis, includes angioplasty, stent placement, or atherectomy on the occluded carotid artery. This is also true of the vertebral artery. Unfortunately, placing instrumentation within a diseased artery is associated with increased risk of ischemic stroke, since manipulation of an atheromatous plaque in the arterial wall often causes emboli to dislodge distally in the narrow cerebral arteries.
Current methods of preventing distal embolization from carotid instrumentation include insertion of a blood filter distal to the occlusion and suctioning embolic debris during the procedures. Disadvantages associated with the conventional methods are that (1) inserting a filter through the atheromatous lesion is associated with increased risk of distal embolization, (2) using suction to reverse the flow in the internal carotid artery may increase a patient's blood loss if the suctioned blood is discarded, and (3) systemic anticoagulation and pumping may be required to recycle the suctioned blood back into the arterial or venous system, and such anticoagulation is associated with increased risk of hemorrhage.
New devices and methods are thus needed for patients undergoing carotid procedures for definitive or prophylactic treatment of carotid plaque, which minimize the risk of distal embolization and prevent ischemic stroke.
SUMMARY OF THE INVENTION
The invention provides devices and methods for preventing ischemic stroke in patients undergoing percutaneous invasive vertebral or carotid procedures, including angioplasty, stent placement, atherectomy, and/or filter insertion, by reversing blood flow down a vertebral artery, an extracranial or intracranial internal carotid artery, an external carotid artery, and/or a common carotid artery and into the ipsilateral subclavian artery. In this way, embolic debris generated as a result of placing instrumentation within a diseased artery is diverted to the subclavian artery, thereby preventing stroke by minimizing distal embolization to the narrow cerebral vessels. The devices and methods are also useful to remove an embolus and improve flow (by reversing collateral blood flow across the circle of Willis) in patients with acute stroke.
The invention utilizes devices comprising a catheter having an expandable constricting member at its distal end. The constrictor may be a balloon, in certain cases a toroidal balloon, or a device of any other appropriate shape, so that it can fully or partially occlude blood flow in a blood vessel, e.g., the common carotid artery, the subclavian artery, the brachiocephalic artery, and the aorta. The lumen of the catheter may be adapted for insertion of a therapeutic instrument, such as an angioplasty, atherectomy, and/or stent catheter. A manometer is optionally mounted proximal and/or distal to the constricting member for monitoring blood pressure proximal and/or distal the constrictor. The proximal end of the catheter may include a hemostatic valve.
In another embodiment, the catheter includes a first constrictor/occluder and a second constrictor, each on respective first and second elongate members. The first and second constrictors are collapsed to facilitate insertion into and removal from the vessel, and expanded during use to restrict blood flow. When expanded, the constrictors may have a maximum periphery that conforms to the inner wall of the vessel, thereby providing a sealed contact between the constrictor and the vessel wall. The devices can optionally include a manometer and/or pressure limiter to provide feedback to the variable flow mechanism for precise control of the upstream and downstream blood pressure. In certain embodiments, the constrictor includes a second lumen for passage of other medical devices. Devices such as an infusion, atherectomy, angioplasty, stent placement, or electrophysiologic study (EPS) catheter, can be introduced through the constrictor to insert in the vessel to provide therapeutic intervention at any site rostrally.
In still another embodiment, the catheter includes a second lumen communicating with a proximal end and an infusion port at its distal end. The port is located distal to the distal port of the catheter. The second lumen and its port are adapted for delivering a pharmaceutical agent to the carotid, brachiocephalic and/or subclavian arteries, including an angiographic dye. Any device described in Barbut, U.S. Pat. No. 6,146,370, and Barbut, U.S. application Ser. No. 09/260,371, filed Mar. 1, 1999, both incorporated herein by reference in their entirety, may also be used in the methods described herein.
The invention provides methods for reversing flow in a vertebral or carotid artery having an atheromatous lesion. More specifically, the methods are useful in reversing flow down a vertebral artery, an extracranial or intracranial internal carotid artery, an external carotid artery, and/or a common carotid artery and into the subclavian artery, and optionally into a filter located in the subclavian artery. In a first method of using the devices described above, the distal end of the catheter is inser

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices and methods for preventing distal embolization using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices and methods for preventing distal embolization using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices and methods for preventing distal embolization using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3320530

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.