Devices and methods for moving an image capture device in...

Surgery – Instruments – Stereotaxic device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C901S019000, C901S027000

Reexamination Certificate

active

06451027

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is generally related to improved robotic devices, systems and methods, for use in telerobotic surgery.
Minimally invasive medical techniques are aimed at reducing the amount of extraneous tissue which may be damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. Many surgeries are performed each year in the United States. A significant amount of these surgeries can potentially be performed in a minimally invasive manner. However, only a relatively small percentage of surgeries currently use minimally invasive techniques due to limitations of minimally invasive surgical instruments and techniques currently used and the difficulty experienced in performing surgeries using such traditional instruments and techniques.
Advances in minimally invasive surgical technology could dramatically increase the number of surgeries performed in a minimally invasive manner. The average length of a hospital stay for a standard surgery is significantly longer than the average length for the equivalent surgery performed in a minimally invasive surgical manner. Thus, expansion in the use of minimally invasive techniques could save millions of hospital days, and consequently millions of dollars annually, in hospital residency costs alone. Patient recovery times, patient discomfort, surgical side effects, and time away from work can also be reduced by expanding the use of minimally invasive surgery.
Traditional forms of minimally invasive surgery include endoscopy. One of the more common forms of endoscopy is laparoscopy, which is minimally invasive inspection or surgery within the abdominal cavity. In traditional laparoscopic surgery a patient's abdominal cavity is insufflated with gas and cannula sleeves are passed through small (approximately ½ inch) incisions in the musculature of the patient's abdomen to provide entry ports through which laparoscopic surgical instruments can be passed in a sealed fashion.
The laparoscopic surgical instruments generally include a laparoscope for viewing the surgical field and working tools defining end effectors. Typical surgical end effectors include clamps, graspers, scissors, staplers, and needle holders, for example. The working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by an approximately 12-inch long extension tube, for example, so as to permit the surgeon to introduce the end effector to the surgical site and to control movement of the end effector relative to the surgical site from outside a patient's body.
To perform surgical procedures, the surgeon typically passes these working tools or instruments through the cannula sleeves to the internal surgical site and manipulates the instruments or tools from outside the abdomen by sliding them in and out through the cannula sleeves, rotating them in the cannula sleeves, levering (i.e., pivoting) the instruments against the abdominal wall and actuating the end effectors on the distal ends of the instruments from outside the abdominal cavity. The instruments normally pivot around centers defined by the incisions which extend through the muscles of the abdominal wall. The surgeon typically monitors the procedure by means of a television monitor which displays an image of the surgical site via the laparoscopic camera. Typically, the laparoscopic camera is also introduced through the abdominal wall so as to capture an image of the surgical site. Similar endoscopic techniques are employed in, e.g., arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy, and the like.
There are many disadvantages relating to such traditional minimally invasive surgical (MIS) techniques. For example, existing MIS instruments deny the surgeon the flexibility of tool placement found in open surgery. Difficulty is experienced in approaching the surgical site with the instruments through the small incisions. The length and construction of many endoscopic instruments reduces the surgeon's ability to feel forces exerted by tissues and organs on the end effector of the associated instrument. Furthermore, coordination of the movement of the end effector of the instrument as viewed in the image on the television monitor with actual end effector movement is particularly difficult, since the movement as perceived in the image normally does not correspond intuitively with the actual end effector movement. Accordingly, lack of intuitive response to surgical instrument movement input is often experienced. Such a lack of intuitiveness, dexterity and sensitivity of endoscopic tools has been found to be an impediment to the expansion of the use of minimally invasive surgery.
Minimally invasive telesurgical systems for use in surgery have been and are still being developed to increase a surgeon's dexterity as well as to permit a surgeon to operate on a patient in an intuitive manner. Telesurgery is a general term for surgical systems where the surgeon uses some form of remote control, e.g., a servomechanism, or the like, to manipulate surgical instrument movements, rather than directly holding and moving the tools by hand. In such a telesurgery system, the surgeon is typically provided with an image of the surgical site on a visual display at a location remote from the patient. The surgeon can typically perform the surgical procedure at the location remote from the patient whilst viewing the end effector movement during the surgical procedure on the visual display. While viewing typically a three-dimensional image of the surgical site on the visual display, the surgeon performs the surgical procedures on the patient by manipulating master control devices at the remote location, which master control devices control motion of the remotely controlled instruments.
Typically, such a telesurgery system can be provided with at least two master control devices (one for each of the surgeon's hands), which are normally operatively associated with two robotic arms on each of which a surgical instrument is mounted. Operative communication between master control devices and associated robotic arm and instrument assemblies is typically achieved through a control system. The control system typically includes at least one processor which relays input commands from the master control devices to the associated robotic arm and instrument assemblies and from the arm and instrument assemblies to the associated master control devices in the case of, e.g., force feedback, or the like.
It is an object of this invention to provide a suitable robotically controlled image capture system for capturing an image of a surgical site on which a surgical procedure is to be performed. It is another object of this invention to provide an image capture positional control system which can advantageously be used in minimally invasive surgical applications.
SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, there is provided a positional control system for varying the position of a robotic surgical tool, such as an image capture device, for example, the positional control system comprising a base; a mounting formation arranged to support the robotic surgical tool; and an articulated arm extending between the base and the mounting formation, the articulated arm having an upper arm portion, a forearm portion, a forearm link member and an upper arm link member, the portions and link members being pivotally secured relative to one other to effect displacement of the mounting formation relative to the base, the forearm link member being positioned at least partially within the forearm portion and the upper arm link member being positioned at least partially within the upper arm portion.
In accordance with another aspect of the invention, there is provided a positional control system for varying the position of a robotic surgical tool, the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices and methods for moving an image capture device in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices and methods for moving an image capture device in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices and methods for moving an image capture device in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865148

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.