Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Utility Patent
1999-01-13
2001-01-02
Winakur, Eric F. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
C600S324000, C600S454000, C600S459000
Utility Patent
active
06169914
ABSTRACT:
BACKGROUND OF THE INVENTION
Until recently, most vasculogenic sexual-dysfunction research has focussed on males, e.g. on physiologic causes of erectile insufficiency. Abnormal reduction of blood flow through the penile cavernosal arteries and excess venous outflow, i.e. veno-occlusive dysfunction, are well-recognized physiologic causes of impotence and have been the subject of intense study. Now, however, an increasing amount of research is being conducted in the field of vasculogenic female sexual dysfunction.
Studies of sexual dysfunction in couples have revealed that more females than males may experience arousal or orgasmic problems. Whereas 40% of men experienced erectile or ejaculatory dysfunction in one such study, arousal or orgasmic dysfunctions affected 63% of women. See Frank, E., et al., “Frequency of sexual dysfunction in ‘normal’ couples,”
N Engl J Med
1978; 299: 111-115, which is incorporated herein by reference. Vasculogenic factors are thought to be one of the primary causes of female sexual dysfunction, and increasing age and the onset of menopause contribute to the problem.
It is known that during normal sexual function, the female undergoes many physiological changes. These changes include, among others, increased labial flow, dilation of the introitus, changes in vaginal-wall blood flow (resulting in color change, for example), vaginal lubrication (transudates), vaginal dilation, vaginal lengthening, nipple and clitoral erections, muscle contractions, pupil dilation, increased blood pressure and heart rate, and skin blushing.
Because the prior art has focused primarily on erectile insufficiency in males and other male-related problems, there have been relatively few attempts to effectively determine and treat causes of female sexual dysfunction, for example by monitoring or measuring the above-referenced physiological changes that the female under goes during sexual arousal.
Ultrasound Devices
Recent research indicates that organic female sexual dysfunction may be related in part to vasculogenic impairment of the hypogastric-vaginal/clitoral arterial bed. Ultrasound testing and monitoring of New Zealand White female rabbits has caused several researchers to conclude that vaginal engorgement and clitoral erection depend on increased blood flow, and that certain organic disease states may reduce such flow. Atherosclerosis is thought to be associated with vaginal engorgement insufficiency and clitoral erectile insufficiency. See K. Park, I. Goldstein, et al., “Vasculogenic female sexual dysfunction: The hemodynamic basis for vaginal engorgement insufficiency and clitoral erectile insufficiency,”
Intl J Impotence Res
1997; 9:27-37, which is incorporated herein by reference. The Park article reported use of an electrode for pelvic nerve stimulation, and reported use of laser Doppler ultrasound for blood flow measurements in cavernosal arteries in the clitoris and vaginal walls of rabbits.
The Park article based its conclusions strictly on an animal model. To obtain blood flow measurements in the experimental rabbits, incisions were made and laser Doppler flow probes were placed directly into the vaginal muscularis layer and into the clitoral corporal bodies. Incisions were necessary because generally speaking, the laser energy generated by such probes does not penetrate tissue to an extent sufficient to measure arterial blood flow. Although the article theorized that duplex Doppler investigations might be included in future studies with human subjects, it did not address how such investigations would be conducted or what equipment would be acceptable for doing so. Clearly, the invasive devices and strategies applied in Park's animal model are unacceptable for routine use in humans.
Other researchers have used laser Doppler velocimetry to measure vaginal blood flow in human subjects. Dr. P. M. Sarrel of Yale University measured vaginal blood flow using a laser disc probe fitted into a plastic vaginal speculum. The probe emitted monochromatic light for penetrating the skin or mucosal surface of the vagina to a depth of about 1 mm. Cutaneous capillary and arteriolar flow in response to hormone therapy was measured. The speculum was inserted to a controlled depth, specifically a depth of about 6.0 cm, for sampling from the part of the vagina most reflective of hormonal stimulation. See Sarrel, P. M., Dr., “Ovarian hormones and vaginal blood flow: using laser Doppler velocimetry to measure effects in a clinical trial of post-menopausal women,”
Intl J Impotence Res,
1998, 10, Suppl 2, S91-S93. As indicated, the Sarrel article measured the effect of hormone therapy on capillary and arteriolar flow, without considering measurement of arterial flow before, during or after a period of active sexual arousal. Further, it is unclear from the article exactly how the laser disc probe and speculum are attached or disposed with respect to each other.
U.S. Pat. Nos. 5,565,466 and 5,731,339 to Gioco, et al. and Lowrey, respectively, briefly reference use of Doppler ultrasonic velocimetry to measure blood flow in connection with modulation of the female sexual response. It is unclear how exactly this measurement is accomplished, however. U.S. Pat. No. 4,541,439 to Hon discloses a device for monitoring capillary blood flow. The device must be placed between the vaginal and cervical walls, and then an expandable bladder inflated to create a tight fit. U.S. Pat. No. 4,757,823 to Hofmeister discloses a device for monitoring uterine blood flow, the device including a cervical cup that must be shaped and sized to closely fit the woman's cervix. U.S. Pat. Nos. 5,499,631 and 4,224,949 to Weiland and Scott, et al., respectively, disclose vaginal probes for detection of estrus in bovine.
Finally, handheld ultrasound measurement devices are common in the art for measuring blood flow in connection with e.g. cardiac output. U.S. Pat. No. 5,575,289 to Skidmore, for example, discloses such a device for measuring cross-sectional area and blood-flow velocity in a cardiac-output context.
An important limitation with handheld ultrasound devices is that the angle of incidence, i.e. the angle between the ultrasonic beam direction and the blood-flow vector, can vary unacceptably from reading to reading over time, or even during a single reading. This variability is a result of the instability and imprecision inherent in a handheld device. The medical professional does not know what the angle of incidence is, and, even if a desired angle is known, achieving that desired angle reproducibly on repeat measurements is very difficult during a diagnostic procedure that requires many separate measurements. Even if the relevant calculations eliminate the need to know the precise angle, e.g. by taking velocity ratios to effectively eliminate the angle variable, the angle must be held constant. This instability represents a significant disadvantage with previous ultrasound devices.
The importance of maintaining fixed angle of incidence in monitoring e.g. blood flow in the male genital region is disclosed in commonly assigned PCT Publication No. WO 98/06333, which is incorporated herein by reference. This publication focuses more on the male anatomy than the female anatomy, however.
Vaginal Photoplethysmography
One of the physiological changes that occurs during female sexual arousal is an increase in vaginal-wall blood flow, as referenced above. Vaginal wall capillary blood flow changes have been measured by photoplethysmography. A light emitter, e.g. a laser or infrared diode, generates a light that is reflected by the vaginal wall (or the skin, in non-vaginal applications) to a photodetector. Changes in the intensity of the reflected light are related to vascular changes that occur in the vaginal tissue; the amount of blood in the tissue affects the amount of light that is reflected or “backscattered” and therefore that reaches the photocell or other optical sensor.
The most common vaginal photoplethysmograph is a tampon-sized device with a diode light source and a light detector, such as a pho
Abrams Jerome H.
Hovland Claire T.
Knoll L. Dean
Olson Curtis E.
Dicke, Billig & Czaja
UroMetrics Inc.
Winakur Eric F.
LandOfFree
Devices and methods for monitoring female arousal does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Devices and methods for monitoring female arousal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices and methods for monitoring female arousal will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2467783