Devices and methods for monitoring drug therapy compliance

Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing – Testing efficacy or toxicity of a compound or composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S009100

Reexamination Certificate

active

06663846

ABSTRACT:

FIELD OF INVENTION
The present invention relates to methods and compositions for monitoring devices useful for determining whether patients have complied with prescribed therapeutic regimens. In particular, the detection devices of the present invention comprise instruments that may be placed on a patient's skin for transdermal detection of a signal, such as a fluorescent signal, for indicating positive or negative compliance.
BACKGROUND OF THE INVENTION
Nonadherence to therapy has been cited as one of the greatest obstacles to the elimination of certain infectious diseases such as tuberculosis (TB). Nonadherence results in treatment failure, relapse, continued infectiousness, and is one of the principal “drivers” for the emergence of drug-resistant strains of infectious agents.
Although numerous systems and procedures have been suggested and implemented in an attempt to improve drug therapy compliance, there remains a need for a system that is easily administered and simple to use. For example, “Directly Observed Treatment Short-Course” (DOTS), in which the ingestion of every dose of prescribed drugs is witnessed by a health care worker or other responsible individual, has been hailed by the World Health Organization (WHO) as the “breakthrough of the century” because of its potential to ensure compliance. There are shortcomings to DOTS, however, including high cost, limited availability, patient resentment, and the requirement for a high degree of patient cooperation. Patients must faithfully attend a clinic or rendezvous with healthcare workers. Recent surveys of programs based on directly observed therapy indicate that they experience an average noncompliance rate of 18%. When patients fail to cooperate with directly observed therapy, involuntary incarceration is the final resort of health officials. Furthermore, each of the listed shortcomings are even more exaggerated in the developing world, where severe shortages in resources such as basic healthcare presents tremendous opportunity for the breeding and development of more drug-resistant and virulent strains of infectious agents. [1-3] In summary, although a variety of methods have been proposed to monitor compliance, including pill counting, microelectronic event monitoring system (MEMS) and other approaches [4-6], as of yet there is no easily administered system that ensures therapeutic compliance effectively and economically.
As valuable as directly observed therapy has proven to be, it requires the participation of several individuals and multiple procedures which in many cases makes therapy burdensome, resulting in ultimate non-compliance. Patients, physicians, and public health officials agree that more efficient ways to assure compliance are needed.
Recent scientific reporting has documented an alarming rise in infectious disease. Some diseases that were previously considered to be “under control” have re-emerged, many of them carried by drug-resistant strains making routine and standard therapeutic intervention useless. For example, it is well known that human infections caused by mycobacteria have been widespread since ancient times and that tuberculosis was a leading cause of death less than 250 years ago. What is less well known, however, is that mycobacterial diseases still constitute a leading cause of morbidity and mortality in countries with limited medical resources and can cause overwhelming, disseminated disease in immunocompromised patients. In fact, the number of reported tuberculosis cases has also been increasing in the developed world. What is even more troubling is that numerous drug-resistant mycobacterial strains have been identified.
Tuberculosis
Tuberculosis has been a major disease of mankind for most of recorded history. The incidence of the disease declined in parallel with advancing standards of living since at least the mid-nineteenth century. However, in spite of the efforts of numerous health organizations worldwide, the eradication of tuberculosis (TB) has never been achieved, nor is eradication imminent. Nearly half of the world's population is infected with
M. tuberculosis,
with approximately 8 million new cases and 3 million deaths attributable to TB yearly.
After decades of decline, TB is on the rise. In the United States, up to 10 million individuals are believed to be infected. Almost 28,000 new cases were reported in 1990, a 9.4 percent increase over 1989. A sixteen percent increase was observed from 1985 to 1990. TB is acquired by the respiratory route when actively infected individuals spread this infection efficiently by coughing or sneezing “droplet nuclei” which contain viable bacilli. Overcrowded living conditions and shared air spaces are especially conducive to the spread of TB, underlying the increase in instances that have been observed in the U.S. in prison inmates and among the homeless in larger cities.
Alarmingly, outbreaks of TB cases resistant to at least two of the most effective anti-TB drugs rifampin (RFP) and isoniazide (INH) are being reported in hospitals and correctional facilities with evidence of transmission to human immunodeficiency virus (HIV) negative individuals. Approximately half the patients with acquired immune deficiency syndrome (AIDS) will acquire a mycobacterial infection, with TB being an especially devastating complication. AIDS patients are at higher risks of developing clinical TB and anti-TB treatment seems to be less effective. Consequently, the infection often progresses to a fatal disseminated disease.
The World Health Organization (WHO) continues to encourage the battle against TB, recommending prevention initiatives such as the “Expanded Program on Immunization” (EPI), and as mentioned above, therapeutic compliance initiatives such as “Directly Observed Treatment Short-Course” (DOTS). For the eradication of TB, diagnosis, treatment, and prevention are equally important. Rapid detection of active TB patients will lead to early treatment by which about 90% cure is expected. Therefore, early diagnosis is critical for the battle against TB. Therapeutic compliance will ensure not only elimination of infection, but also reduction in the emergence of drug-resistance strains.
The emergence of drug-resistant
M. tuberculosis
is an extremely disturbing phenomenon. The rate of new TB cases proven resistant to at least one standard drug increased from 10 percent in the early 1980's to 23 percent in 1991. Currently, seven percent of all cases of TB are resistant to at least one drug, over double the number from the early 1980. Compliance with therapeutic regimens, therefore, is a crucial component in efforts to eliminate TB and prevent the emergence of drug-resistant strains.
Although over 37 species of mycobacteria have been identified, more than 95% of all human infections are caused by six species of mycobacteria:
M. tuberculosis, M. avium-intracellulare, M. kansasii, M. frotuitum, M. chelonae,
and
M. leprae.
In addition, infections resulting from drug-resistant strains have also been observed.
The most prevalent mycobacterial disease in humans is tuberculosis (TB) which is caused by
M. tuberculosis, M. bovis,
or
M. africanum
(Merck Manual 1992). Infection is typically initiated by the inhalation of infectious particles which are able to reach the terminal pathways. Following engulfment by alveolar macrophages, the bacilli are able to replicate freely, with eventual destruction of the phagocytic cells. A cascade effect ensues wherein destruction of the phagocytic cells causes additional macrophages and lymphocytes to migrate to the site of infection, where they too are ultimately destructed. The disease is further disseminated during the initial stages by the infected macrophages which travel to local lymph nodes, as well as into the blood stream and other tissues such as the bone marrow, spleen, kidneys, bone and central nervous system. (See Murray et al.
Medical Microbiology
, The C.V. Mosby Company 219-230 (1990)).
Additionally, mycobacteria other than
M. tuberculosis
are also becoming inc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices and methods for monitoring drug therapy compliance does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices and methods for monitoring drug therapy compliance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices and methods for monitoring drug therapy compliance will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3111162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.