Surgery – Miscellaneous – Methods
Reexamination Certificate
1998-09-25
2001-09-04
Isabella, David J. (Department: 3738)
Surgery
Miscellaneous
Methods
C600S107000, C604S004010
Reexamination Certificate
active
06283127
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to instruments and techniques for performing less-invasive surgical procedures, and more specifically, to instruments and techniques for less-invasive surgery within the heart and great vessels.
BACKGROUND OF THE INVENTION
Various types of surgical procedures are currently performed to investigate, diagnose, and treat diseases of the heart and the great vessels of the thorax. Such procedures include repair and replacement of mitral, aortic, and other heart valves, repair of atrial and ventricular septal defects, pulmonary thrombectomy, treatment of aneurysms, electrophysiological mapping and ablation of the myocardium, and other procedures in which interventional devices are introduced into the interior of the heart or a great vessel.
Using current techniques, many of these procedures require a gross thoracotomy, usually in the form of a median sternotomy, to gain access into the patient's thoracic cavity. A saw or other cutting instrument is used to cut the sternum longitudinally, allowing two opposing halves of the anterior or ventral portion of the rib cage to be spread apart. A large opening into the thoracic cavity is thus created, through which the surgical team may directly visualize and operate upon the heart and other thoracic contents.
Surgical intervention within the heart generally requires isolation of the heart and coronary blood vessels from the remainder of the arterial system, and arrest of cardiac function. Usually, the heart is isolated from the arterial system by introducing an external aortic cross-clamp through a sternotomy and applying it to the aorta between the brachiocephalic artery and the coronary ostia. Cardioplegic fluid is then injected into the coronary arteries, either directly into the coronary ostia or through a puncture in the aortic root, so as to arrest cardiac function. In some cases, cardioplegic fluid is injected into the coronary sinus for retrograde perfusion of the myocardium. The patient is placed on cardiopulmonary bypass to maintain peripheral circulation of oxygenated blood.
Of particular interest to the present invention are intracardiac procedures for surgical treatment of heart valves, especially the mitral and aortic valves. According to recent estimates, more than 79,000 patients are diagnosed with aortic and mitral valve disease in U.S. hospitals each year. More than 49,000 mitral valve or aortic valve replacement procedures are performed annually in the U.S., along with a significant number of heart valve repair procedures.
Various surgical techniques may be used to repair a diseased or damaged valve, including annuloplasty (contracting the valve annulus), quadrangular resection (narrowing the valve leaflets), commissurotomy (cutting the valve commissures to separate the valve leaflets), shortening mitral or tricuspid valve chordae tendonae, reattachment of severed mitral or tricuspid valve chordae tendonae or papillary muscle tissue, and decalcification of valve and annulus tissue. Alternatively, the valve may be replaced, by excising the valve leaflets of the natural valve, and securing a replacement valve in the valve position, usually by suturing the replacement valve to the natural valve annulus. Various types of replacement valves are in current use, including mechanical and biological prostheses, homografts, and allografts, as described in Bodnar and Frater,
Replacement Cardiac Valves
1-357 (1991), which is incorporated herein by reference. A comprehensive discussion of heart valve diseases and the surgical treatment thereof is found in Kirklin and Barratt-Boyes,
Cardiac Surgery
323-459 (1986), the complete disclosure of which is incorporated herein by reference.
The mitral valve, located between the left atrium and left ventricle of the heart, is most easily reached through the wall of the left atrium, which normally resides on the posterior side of the heart, opposite the side of the heart that is exposed by a median sternotomy. Therefore, to access the mitral valve via a sternotomy, the heart is rotated to bring the left atrium into an anterior position accessible through the sternotomy. An opening, or atriotomy, is then made in the right side of the left atrium, anterior to the right pulmonary veins. The atriotomy is retracted by means of sutures or a retraction device, exposing the mitral valve directly posterior to the atriotomy. One of the forementioned techniques may then be used to repair or replace the valve.
An alternative technique for mitral valve access may be used when a median sternotomy and/or rotational manipulation of the heart are undesirable. In this technique, a large incision is made in the right lateral side of the chest, usually in the region of the fifth intercostal space. One or more ribs may be removed from the patient, and other ribs near the incision are retracted outward to create a large opening into the thoracic cavity. The left atrium is then exposed on the posterior side of the heart, and an atriotomy is formed in the wall of the left atrium, through which the mitral valve may be accessed for repair or replacement.
Using such open-chest techniques, the large opening provided by a median sternotomy or right thoracotomy enables the surgeon to see the mitral valve directly through the left atriotomy, and to position his or her hands within the thoracic cavity in close proximity to the exterior of the heart for manipulation of surgical instruments, removal of excised tissue, and/or introduction of a replacement valve through the atriotomy for attachment within the heart. However, these invasive, open-chest procedures produce a high degree of trauma, a significant risk of complications, an extended hospital stay, and a painful recovery period for the patient. Moreover, while heart valve surgery produces beneficial results for many patients, numerous others who might benefit from such surgery are unable or unwilling to undergo the trauma and risks of current techniques.
What is needed, therefore, are devices and methods for carrying out heart valve repair and replacement as well as other procedures within the heart and great vessels that reduce the trauma, risks, recovery time and pain that accompany current techniques. The devices and methods should facilitate surgical intervention within the heart or great vessels without the need for a gross thoracotomy, preferably through small incisions within intercostal spaces of the rib cage, without cutting, removing, or significantly deflecting the patient's ribs or sternum. In particular, the devices and methods should allow for removal of tissue from the thoracic cavity, as well as for introduction of surgical instruments, visualization devices, replacement valves and the like into the thoracic cavity, to facilitate heart valve repair and replacement. Preferably, the devices and methods should facilitate replacement of a heart valve with various types of prostheses, including mechanical and biological prostheses, homografts, and allografts.
SUMMARY OF THE INVENTION
The invention provides devices and methods for performing less-invasive surgical procedures within an organ or vessel, and particularly, within the heart and great vessels of the thoracic cavity. The devices and methods of the invention facilitate intervention within the heart or great vessels without the need for a median sternotomy or other form of gross thoracotomy, substantially reducing trauma, risk of complication, recovery time, and pain for the patient. Using the devices and methods of the invention, surgical procedures may be performed through percutaneous penetrations within intercostal spaces of the patient's rib cage, without cutting, removing, or significantly displacing any of the patient's ribs or sternum. The devices and methods are particularly well-adapted for heart valve repair and replacement, facilitating visualization within the patient's thoracic cavity, repair or removal of the patient's natural valve, and, if necessary, attachment of a replacement valve in the natural
Garrison Michi E.
Gifford, III Hanson S.
Sterman Wesley D.
Stevens John L.
Hoekenduk & Lynch LLP
Isabella David J.
LandOfFree
Devices and methods for intracardiac procedures does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Devices and methods for intracardiac procedures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices and methods for intracardiac procedures will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2456878