Devices and methods for delivering a drug

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06641553

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to an apparatus and method for delivering selected therapeutic and/or diagnostic agents to target sites in selected body tissues. More particularly, the invention provides for the needleless delivery of such agents by providing each agent in one or more high-energy jets or streams directed against selected wall or surface regions of selected tissues.
BACKGROUND OF THE INVENTION
Needles have long been popular for delivering therapeutic and diagnostic agents into selected tissues. In a typical use, a needle, having an axial lumen extending therethrough, is passed through the wall of a selected tissue to a desired depth, and an agent is then passed from a holding region (e.g., in a bag, or syringe barrel), disposed in fluid communication with a proximal end of the needle, through the axial lumen and out of the distal end, into the tissue. Perhaps best known for their use in the delivery of agents through the skin, needles have also been widely employed in connection with catheters and endoscope-type devices for delivering agents to various organs and tissues within the body. For example, in a typical catheter-type device, an outer jacket is configured for navigation through a patient's vasculature, e.g., using a pull-wire mechanism operable to deflect the distal-end region of the catheter, as desired. A reciprocally movable shaft, disposed within the jacket, defines an agent-delivery passage connected at its distal end to the proximal end of an agent-delivery needle. By advancing the internal shaft, an operator can cause the distal, pointed end of the needle to pierce a selected region of tissue. An agent can then be passed through the shaft's lumen, e.g., under pressure, to flow out of the needle's distal end and into the tissue.
While convenient and effective for certain purposes, the use of needles as injection devices is not without its disadvantages. For example, tissue damage can occur in the region of needle penetration. Also, as most needle-injection devices use only a single needle, the delivery of an agent thereby is often highly localized to one, relatively small region in the tissue (i.e., the site occupied by the needle's distal end), thus limiting the area/volume of tissue that can be treated with each delivery operation. With particular regard to catheter-type needle-injection devices, such as described above, axial reciprocation of the needle-bearing shaft within the steerable jacket can be hampered, if not entirely prohibited, in situations where the distal-end region of the catheter must be deflected to a great degree, e.g., in efforts to reach remote regions via tortuous pathways of a patient's vasculature, rendering such devices unsuitable for certain applications.
SUMMARY OF THE INVENTION
One aspect of the present invention provides an apparatus for delivering a selected diagnostic or therapeutic agent to a target site within a selected body tissue, such as myocardial tissue of the heart.
In one general embodiment, the apparatus includes an elongate jacket having (a) proximal and distal ends, (b) one or more lumens extending between such ends, and (c) a substantially blunt, distal-end face defining one or more outlet ports communicating with one or more of the lumens. Preferably, each outlet port has a diameter of about 0.025″, or less (e.g., from about 0.00025″ to about 0.020″). The apparatus further includes a pressure-control source (e.g., a pump) adapted for fluid communication with one or more of the lumens. The pressure-control source is operable to establish an elevated pressure (e.g., up to about 300 psi) within such lumen(s) such that an agent placed therein will be propelled toward, and out of, one or more of the outlet port(s), thereby forming one or more respective fluid jets or streams capable of penetrating a selected tissue disposed adjacent thereto.
The apparatus can further include one or more valves, such as spring-loaded needle-type plungers or the like, each being disposed at location along a distal region of a respective one of the lumens for regulating fluid flow therethrough. The valves can be manually operable, or they can respond automatically to one or more selected events (e.g., reaching a threshold pressure at or near a respective outlet port).
In one embodiment, at least one of the outlet ports has a central, longitudinal axis angled no greater than about 35° in respect to a central, longitudinal axis of the jacket at its distal end. In another embodiment, the central, longitudinal axis of at least one of the outlet ports is oriented substantially parallel to the central, longitudinal axis of the jacket at its distal end. In a further embodiment, one or more outlet ports are configured to provide “side firing” fluid jets or streams.
The structure defining each lumen is configured to withstand an elevated pressure generated in the lumen. For example, in one embodiment, where the jacket defines a lumen, the jacket is adapted to withstand an internal pressure of at least about 300 psi along its proximal end, and at least about 100 psi along its distal end.
The pressure-control source can be a pump, such as a power injector or a hand-operable inflation device. Preferably, the pressure-control source is adapted to generate an internal pressure at a distal end of said jacket, proximate said outlet ports, of at least about 20 psi.
One embodiment of the apparatus incorporates the invention in a catheter-type device. For example, the jacket can be a flexible catheter jacket, including a steerable distal-end region that can be deflected in a manner permitting navigation through the vasculature of a subject body so that the outlet port(s) can be positioned adjacent a wall or surface region of a selected tissue or organ. Or, the catheter-type device can include a fixed shape (bend) at along its distal end to facilitate navigation. In yet another embodiment, a first steerable catheter is slidably maintained within an axial lumen of a second steerable catheter. Another embodiment of the apparatus incorporates the invention in an endoscope-type device. Another embodiment of the apparatus incorporates the invention in an open surgical tool having a bent head to access occluded regions of the tissue to be treated.
Any reasonable number of lumens can extend through the jacket of the apparatus. In one exemplary construction, at least two separate lumens extend through the jacket, each distally terminating at a fluid connection with at least one outlet port. For example, two or more separate lumens can be defined by respective elongate tubes extending through the jacket, with each tube having an internal passage with a diameter of from about 0.010″ to about 0.020″. Advantageously, this configuration reduces the dead volume in the system. Also, the “on/off” response is optimized, and the pressure limit requirement for the conduit can be readily met.
The distal-end face of the jacket is defined, in one embodiment, by a plate-like member mounted substantially transverse to a longitudinal axis of the jacket at its distal-end region. Further in this embodiment, one or more bores extend through the plate-like member—each defining an outlet port. In an exemplary construction, the plate-like member is formed of a suitable, non-reactive metal; and the bores are formed by laser drilling, and/or photo-chemical machining.
In one embodiment of the invention, the apparatus is embodied in a catheter-type assembly. An elongate catheter sleeve is provided, with the catheter sleeve having (i) proximal and distal ends, and (ii) one or more lumens between such ends. For navigation, the catheter sleeve can incorporate a fixed shape at its distal region, and/or it can incorporate a pull-wire steering mechanism. One of the lumens, in this embodiment, is adapted to removably receive the jacket.
According to one embodiment, the jacket-receiving lumen is further adapted to serve as a guidewire channel, when the jacket is removed therefrom.
In another embodiment, on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices and methods for delivering a drug does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices and methods for delivering a drug, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices and methods for delivering a drug will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3132868

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.