Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction
Reexamination Certificate
2007-04-03
2007-04-03
Flynn, Nathan J. (Department: 2826)
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Heterojunction
C257S014000, C257S024000, C257S025000, C438S590000
Reexamination Certificate
active
10843894
ABSTRACT:
A method of forming a semiconductor device includes the following steps: providing a plurality of semiconductor layers; providing means for coupling signals to and/or from layers of the device; providing a layer of quantum dots disposed between adjacent layers of the device; and providing an auxiliary layer disposed in one of the adjacent layers, and spaced from the layer of quantum dots, the auxiliary layer being operative to communicate carriers with the layer of quantum dots.
REFERENCES:
patent: 4575924 (1986-03-01), Reed et al.
patent: 5198879 (1993-03-01), Ohshima
patent: 5202290 (1993-04-01), Moskovits
patent: 5509024 (1996-04-01), Bour et al.
patent: 5657189 (1997-08-01), Sandhu
patent: 5714766 (1998-02-01), Chen et al.
patent: 5909614 (1999-06-01), Krivoshlykov
patent: 5936258 (1999-08-01), Imamura et al.
patent: 5936266 (1999-08-01), Holonyak, Jr. et al.
patent: 6346431 (2002-02-01), Yoo et al.
patent: 6369403 (2002-04-01), Holonyak
patent: 6407439 (2002-06-01), Hier et al.
patent: 6445000 (2002-09-01), Masalkar et al.
patent: 6455870 (2002-09-01), Wang et al.
patent: 6541788 (2003-04-01), Petroff et al.
patent: 6645885 (2003-11-01), Chua et al.
patent: 2341722 (2000-03-01), None
Thean et al. (IDS Reference) “Three-Dimensional Self-Consistent Simulation of Interface and Dopant Disorders in Delta-Doped Grid Quantum Dot Devices”, J. Appl. Phys. 82(4), Aug. 15, 1997.
L. V. Asryan and S. Luryi, “Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability”, IEEE Journal of Quantum Electronics, vol. 37, pp. 905-910 (Jul. 2001).
A. F. Tsatsul'nikor, A. Yu. Egorov, A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, N.N. Ledentsov, M.V. Maksimov, A.V. Sakharow, A.A. Suvorova, P.S. Kop'ev, and Zh. I. Alferov “Modulation of a Quantum Well Potential by a Quantum Dot Array”, Semiconductors 31, 88-91 (1997).
M.V. Maximov, L.V. Asryan, Yu.M. Shernyakov, A.F. Tsatsul'nikov, I.N. Kaiander, V.V. Nikolaev, A.R. Kovsh, S.S. Mikhrin, V.M. Ustinov, A.E. Zhukov, Zh.I. Alferov, N.N. Ledenstov, and D. Bimberg, “Gain and Threshold Characteristics of Long Wavelength Lasers Based on InAs/GaAS Quantum dots Formed by Activated Alloy Phase Separation”, IEEE Journal of Quamtum Electronics, vol. 37, No. 5, May. 2001.
E.A. Rezek, N. Holonyak, Jr., B.A. Vojak, G.E. Stillman, J.A. Rossi, D.L. Keune, and J.D. Fairing, “LPE In1-xGaxP1-zAsz(x ˜ 0.12,z ˜ 0.26) DH Laser With Multiple Thin-Layer (< 500 Å) Active Region”, Appl. Phys. Lett., vol. 31, pp. 288-290, Aug. 15, 1977.
G.T. Liu. A. Stintz, H.Li, K.J. Malloy and L.F. Lester, “Extremely Low Room Temperature Threshold Current Density Diode Lasers Using InAs Dots in In0.15Ga0.85As Quantum Well”, Electronics Letters, vol. 35 No. 14 Jul. 8, 1999.
U.S. Appl. No. 03/059,998, filed Mar. 2003, Holonyak et al.
G.T. Liu, A. Stintz, H. Li, T.C. Newell, A.L. Gray, P.M. Varangis, K.J. Malloy, and L.F. Lester, “The Influence Of Quantum-Well Composition On The Performance Of Quantum Dot Lasers Using InAs/InGaAs Dots-In-A-Well (DWELL) Structures”, IEEE Journal Of Quantum Electronics, vol. 36, No. 11, Nov. 2000.
A. Stintz, G.T. Liu, Student member, IEEE, H.Li, L.F. Lester, Member, IEEE, and K.J. Malloy, Member IEEE, “Low-Threshold Current Density 1.3 μm InAs Quantum-Dot Lasers With The Dots-In-A-Well (DWELL) Structure”, IEEE Photonics Technology Letters, vol. 12, No. 6, Jun. 2000.
J.H. Ryou, R.D. Dupuis, G. Walter, N. Holonyak, Jr., D.T. Mathes, R. Hull, C.V. Reddy and V. Narayanamurti, “Properties Of InP Self-Assembled Quantum Dots embedded In In0.49(AlxGa1-x)0.51P For Visible Light Emitting Laser Applications Grown By Metalorganic Chemical Vapor Deposition”, Journal Of Applied Physics, vol. 91, No. 8, Apr. 15, 2002.
U.S. Appl. No. 02/079,485, filed Jun. 2002, Stintz et al.
P.G. Eliseev, H.Li, A. Stintz, G.T. Lui, T.C. Newell, K.J. Malloy, and L.F. Lester, “Transition Dipole Moment Of InAs/InGaAs Quantum Dots From Experiments On Ultralow-Threshold Laser Diodes”, Applied Physics Letters, vol. 77, No. 2, Jul. 10, 2000.
G. Walter, N. Holonyak, Jr., R. Heller and R.D. Dupuis, “Visible Spectrum (654 mn) Room Temperature Continuous Wave (cw) InP Quantum Dot Coupled To InGaP Quantum Well InP-InGaP-In(AIGA) P-InAI1P Heterostructure Laser”, Appl. Phys. Lett., vol. 81, No. 24, Dec. 9, 2002.
E.A. Rezek, H. Shichijo, B.A. Vojak, and N. Holonyak, Jr., “Confined-Carrier Luminescene of a Thin In1-xGaxP1-zAszWell (x ˜ 0.13, z ˜ 0.29; ˜ 400 Å) in an InP p-n Junction,” Appl. Phys. Lett., vol. 31 pp. 534-536, Oct. 15, 1977).
J.H. Ryou, R. Dupuis, N. Holonyak, et al. “Photopumped Red-Emitting InP/In0.5Al0.3Ga0.2P Self-Assembled Quantum Dot Heterostructure Lasers Grown By Metaloroganic Chemical Vapor Deposition”, Appl. Phys. Lett. 78, 4091-4093, Jun. 25, 2001.
T. Richard, E. Chen, A. Sugg, G. Hofler, and N. Holonyak, “High Current Density Carbon-Doped Strained-Layer GaAs (p+) -InGaAs (n+) -GaAs (n+) p-n Tunnel Diodes”, Appl. Phys. Lett. 63, 3616 (Dec. 27, 1993).
H. Saito et al., “Room Temperature Lasing Operation Of A Quantum Dot Vertical Cavity Surface Emitting Laser”, Appl. Phys. Lett. 69 (21), Nov. 18, 1996.
M. Maximov et al., “High Power Continuous Wave Operation InGaAs/AlGaAs Quantum Dot Laser”, J. Appl. Phys., 83, 10, May 1998.
G. Walter, N. Holonyak, J. Ryou and R. Dupuis, “Room-Temperature Continuous Photopumped Laser Operation Of Coupled InP Quantum Dot And InGaP Quantum Well InP-In (AlGa) P-InAlP Heterostructures”, Appl. Phys. Lett. 79, 1956 (Sep. 24, 2001).
G. Walter, H. Holonyak, J. Ryou and R. Dupuis, “Coupled InP Quantum Dot InGaP Quantum Well InP-In (AlGa) P-InA1P Heterostructure Diode Laser Operation”, Appl. Phys. Lett. 79, 3215 (Nov. 2001).
G. Walter, T. Chung, and N. Holonyak, Jr., “High Gain Coupled InGaAs Quantum Well InAs Quantum Dot AlGaAs-GaAs-InGaAs-InAs Heterostructure Diode Laser Operation”, Appl. Phys. Lett. 80, 1126 (Feb. 2002) .
T. Chung, G. Walter, and N. Holonyak, Jr., “Coupled Strained-Layer InGaAs Quantum-Well Improvement Of An InAs Quantum Dot AlGaAs-GaAs-InAs Heterostructure Laser”, Appl. Phys. Lett., 79, 4500 (Dec. 2001) .
S. Chuang and N. Holonyak, “Efficient Quantum Well To Quantum Dot Tunneling: Analytical Solutions”, Appl. Phys. Lett. 80, 1270 (Feb. 2002).
J.M. Dallesasse, N. Holonyak, Jr., A.R. Sugg, T.A. Richard, and N. El-Zein, Appl. Phys. Lett. 57, 2844 (1990).
Thean et al, “Three-dimensional Self-consistant Simulation of Interface and Dopant Disorders in Delta-doped Grid Quantum Dot Devices” J. Appl. Phy 82(4) ,Aug. 15, 1997.
S. Weber, W. Limmer, K. Thonke, R. Sauer, K. Panzlaff, G. Bacher, H. P. Meier, and P. Roentgen, Phys. Rev. B 52, 14739 (1995).
M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, Phys. Rev. B 46, 6922 (1992).
W. J. Turner, W. E. Reese, and G. D. Pettit, Phys. Rev. 136, A1467 (1964).
X. B. Zhang, K. L. Ha, and S. K. Hark, J. Electron. Mater. 30, 1332 (2001).
L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi, Appl. Phys. Lett. 69, 3354, (1996).
E. F. Schubert “Delta-Doping Of Semiconductors” (book) , Cambridge . University Press.
Heller et al., “Low Threshold Room Temperature Continuous Wave InP Quantum Dot Coupled to InGaP Quantum Well Heterostructure Laser Grown by MOCVD” (2003 IEEE) , conference article.
Ranjan, “Shallow Impurities And Delta Doping In Quantum Dot And Quantum Well Systems”, Journal of Condensed Matter, (13) (2001) 8105-8119.
Dupuis Russell
Holonyak, Jr. Nick
Flynn Nathan J.
Novack Martin
The Board of Regents The University of Texas System
The Board of Trustees of the University of Illinois
Wilson Scott R
LandOfFree
Device with quantum dot layer spaced from delta doped layer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device with quantum dot layer spaced from delta doped layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device with quantum dot layer spaced from delta doped layer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3756166