Device with magnetoplastic and/or magnetoelastic thin-film...

Electrical generator or motor structure – Dynamoelectric – Reciprocating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S862333

Reexamination Certificate

active

08008816

ABSTRACT:
A magnetoplastic and/or magnetoelastic material transduces linear motion, delivered to it by a mechanical connection, into a change of magnetic field, via twin boundary deformation. A bias magnetic field assures a net change of magnetization during the deformation, and a coil, coaxial with the magnetoplastic/elastic material, couples the magnetic field change to an electrical output. The bias magnetic field or a device that produces strain in a reverse direction resets the magnetomechanical transducer to its initial state. Microgenerators using the magnetoplastic/elastic material may be connected in series or parallel, combined with solar cells, and used to capture energy from passive motion such as random, cyclic or vibrational motion.

REFERENCES:
patent: 3288942 (1966-11-01), Voegeli
patent: 3577108 (1971-05-01), Bengtson et al.
patent: 4364013 (1982-12-01), Castera et al.
patent: 5850109 (1998-12-01), Mock et al.
patent: 5958154 (1999-09-01), O'Handley et al.
patent: 6034887 (2000-03-01), Gupta et al.
patent: 6037682 (2000-03-01), Shoop et al.
patent: 6307241 (2001-10-01), Awschalom et al.
patent: 6433465 (2002-08-01), McKnight et al.
patent: 6515382 (2003-02-01), Ullakko
patent: 6655035 (2003-12-01), Ghandi et al.
patent: 6909224 (2005-06-01), Ghandi et al.
patent: 6927475 (2005-08-01), Lu
patent: 6984902 (2006-01-01), Huang et al.
patent: 6995496 (2006-02-01), Hagood, IV et al.
patent: 7009310 (2006-03-01), Cheung et al.
patent: 7020015 (2006-03-01), Hong et al.
patent: 7059201 (2006-06-01), Prakash et al.
patent: 7199495 (2007-04-01), Or et al.
patent: 7564152 (2009-07-01), Clark et al.
patent: 2006/0003185 (2006-01-01), Parkin
patent: 2006/0130758 (2006-06-01), Lohokare et al.
patent: 2006/0222904 (2006-10-01), Hsia et al.
patent: 2008/0143195 (2008-06-01), Hampikian et al.
patent: 2008/0225575 (2008-09-01), Mullner et al.
patent: 2009/0092817 (2009-04-01), Mullner et al.
patent: 2009/0167115 (2009-07-01), Tucker et al.
patent: WO2008/049124 (2008-04-01), None
patent: WO2008/061166 (2008-05-01), None
patent: WO2009/029953 (2009-03-01), None
“Harvesting my Magnetostrictive material (MSM) for powering wireless sensor in SHM”, Wang and Yuan, SPIE/ASME Best Student Paper Presentation Contest. Mar. 2007.
“A magnetotrictive electric generator”, Lundgren et al. Nov. 1993, IEEE transaction on magnetics, vol. 29, No. 6.
Chernenko VA, Cesari E, Kokorin VV, Vitenko IN, The Develpment of New Ferromagnetic Shape Memory Alloys in Ni-Mn-Ga System, Scripta Metal Mater 1995;33:1239.
Chernenko VA, L'Vov VA, Pasquale M, Besseghini S, Sasso C, Polenur DA, Magnetoelastic Behavior of Ni-Mn-Ga Martensitic Alloys, Int J Appl Electromag Mech 2000;12:3.
Chernenko VA, Müllner P, Wollgarten M, Pons J, Kostorz G, Magnetic Field Induced Strains Caused by Different Martensites in Ni-Mn-Ga Alloys, J de Phys IV, 2003;112:951.
Ferreira PJ, Vander Sande JB, Magnetic Field Effects on Twin Dislocations, Scripta Mater 1999;41:117.
Jääskeläinen A, Ullakko K, Lindroos VK, Magnetic Field-Induced Strain and Stress in a Ni-Mn-Ga Alloy, J de Phys IV, 2003;112:1005.
Murray SJ, Marioni M, Allen SM, O'Handley RC, Lograsso TA, 6% Magnetic-Field-Induced Strain by Twin-Boundary Motion in Ferromagnetic Ni-Mn-Ga, Appl Phys Lett 2000a;77:886.
Murray SJ, Marioni M, Kukla AM, Robinson J, O'Handley RC, Allen SM, Large Field Induced Strain in Single Crystalline Ni-Mn-Ga Ferromagnetic Shape Memory Alloy, J Appl Phys 2000b;87:5774.
Müllner P, Between Microscopic and Mesoscopid Descriptions of Twin—Twin Interaction, Int J Mater Res(Z f Metallk) 2006;97:205.
Müllner P, Chernenko VA, Wollgarten M, Kostorz G, Large Cyclic Deformation of a Ni-Mn-Ga Shape Memory Alloy Induced by Magnetic Fields, J Appl Phys 2002;92:6708.
Müllner P, Chernenko VA, Kostorz G, A Microscopic Approach to the Magnetic-Field-Induced Deformation of Martensite (Magnetoplasticity), J Magn Magn Mater 2003a;267:325.
Müllner P, Chernenko VA, Kostorz G, Stress-Induced Twin Rearrangement Resulting in Change of Magnetization in a Ni-Mn-Ga Ferromagnetic Martensite, Scripta Mater 2003b;49:129.
Müllner P, Chernenko VA, Kostorz G, Large Magnetic-Field-Induced Deformation and Magneto-Mechanical Fatigue of Ferromagnetic Ni-Mn-Ga Martensites, Mater Sci Eng A 2004;387:965.
Müllner P, Ullakko K. The Force of a Magnetic/Electric Field on a Twinning Dislocation, Phys Stat Sol (b) 1998;208:R1.
Pond RC, Celotto S, Special Interfaces: Military Transformations, Intern Mater rev 2003;48:225.
Sozinov A, Likhachev AA, Lanska N, Ullakko K, Giant Magnetic-Field-Induced Strain in NiMnGa Seven-Layered Martensitic Phase, Appl Phys Lett 2002;80:1746.
Straka L, Heczko O, Magnetization Changes in Ni-Mn-Ga Magnetic Shape Memory Single Crystal During Compressive Stress Reorientation, Scripta Mater 2006;54:1549.
Soursa I, Pagounis E, Ullakko K, Magnetization Dependence on Strain in the Ni-Mn-Ga Magnetic Shape Memory Material, Appl. Phys. Lett. 2004a;23:4658.
Suorsa I, Tellinen J, Ullakko K, Pagounis E, Voltage Generation Induced by Mechanical Straining in Magnetic Shape Memory Materials, J Appl Phys 2004b;95:8054.
Tickle R, James RD, Magnetic and Magnetomechanical Properties of Ni2MnGa, J Magn Magn Mater 1999;195:627.
Ullakko K, Magnetically Controlled Shape Memory Alloys: A New Class of Actuator Materials, J Mater Eng Perf, 1996;5:405.
Ullakko K, Huang JK, Kantner C, O'Handley RC, Kokorin VV, Large Magnetic-Field-Induced Strains in Ni2MnGa Single Crystals, J Appl Phys 1996;69:1966.
J. Cui, T. W. Shield, R. D. James, Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy, Acta mater. 52, 35 (2004).
A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, K. Ishida, Magnetic properties and large magnetic-field-induced strains in off-stoichiometric Ni-Mn-Al Heusler alloys, Appl. Phys. Lett. 77, 3054 (2000).
R. D. James and M. Wuttig, Magnetostriction of martensite, Phil. Mag. A 77, 1273 (1998).
G. Kostorz and P. Müllner, Z. F., Magnetoplasticity, Metallkd. 96, 703 (2005).
H. H. Liebermann and C D Graham Jr Plastic and Magnetoplastic Deformation of Dy Single Crystals, Acta Met. 25, 715 (1976).
R. Santamarta, E. Cesari, J. Font, J. Muntasell, J. Pons, J. Dutkiewicz, Effect of atomic order on the martensitic transformation of Ni-Fe-Ga alloys, Scripta Mater. 54, 1985 (2006).
A. S. Sologubenko, P. Müllner, H. Heinrich K Kostorz, Z. F., On the plate-like τ-phase formation in MnAl-C alloys, Metallkd. 95, 486 (2004).
N. I. Vlasova, G. S. Kandaurova, N. N. Shchegoleva, J., Effect of the polytwinned microstructure parameters on magnetic domain structure and hysteresis properties of the CoPt-type alloys, Magn. Magn. Mater. 222, 138 (2000).
T. Wada, T. Tagawa, M. Taya, Martensitic transformation in Pd-rich Fe-Pd-Pt alloy, Scripta Mater. 48, 207 (2003).
M. Wuttig, J. Li, C. Craciunescu, A New Ferromagnetic Shape Memory Alloy System, Scripta Mater. 44, 2393 (2001).
J. H. Zhang, W. Y. Peng, S. Chen, T.Y. Hsu (X. Zaoyao), Magnetic shape memory effect in an antiferromagnetic γ-Mn-Fe(Cu) alloy, Appl. Phys. Lett. 86, 022506 (2005).
Chernenko Va, L'Vov Va, Cesari E, Martensitic Transformation in Ferromagnets: Experiment and Theory, J Magn Magn Mater 1999;196-197:859.
Karaman, et al., Energy Harvesting Using Martensite Variant Reorientation Mechanism in a NiMnGa Magnetic Shape Memory Alloy, Applied Physics Letters, 90, 172505 (2007). Published on-line Apr. 24, 2007.
Likhachev et al., Magnetic-field-cotrolled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy, Physics Letters, Oct. 2, 2000, pp. 142-151, vol. A 275, Elsevier Science.
Li et al., Some aspects of strain-induced change of magnetization in a Ni-Mn-Ga single crystal, Scripta Materialla, available online Jul. 6, 2005, pp. 829-834, vol. 53, Elsevier Ltd.
Boonyongmaneerat et al., Increasing Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints through Porosity, Physical Review Letters, Dec. 14, 2007, pp. 247201-1 to 4, vol. 99, The American Physical Society.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device with magnetoplastic and/or magnetoelastic thin-film... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device with magnetoplastic and/or magnetoelastic thin-film..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device with magnetoplastic and/or magnetoelastic thin-film... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2697330

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.