Device, system and method for labeling three-dimensional...

Printed matter – Method – Identifying

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C283S079000, C283S081000, C040S310000

Reexamination Certificate

active

06557898

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a device, system and a method for labeling three-dimensional objects, such as vials that are used in chemical analysis.
BACKGROUND
Several methods for placing identification information onto three-dimensional objects currently exist. One method utilizes an adhesive to adhere the identification information to the surface of the object, such as by attaching an identifying label. Another involves printing the identification information on the surface of the object, such as through the use of ink. The information could also be stamped into the surface of the object. Alternatively, the identification information may be etched into the surface of the object through the use of a laser or other etching tool. Another method involves placing the identification information onto a tag and tying the tag to the object.
For many three-dimensional objects, however, the currently available methods for placing identification information onto the objects are not compatible with the manner in which the objects are used in certain industries. One example of such an object is a vial used in chemical analysis. Chemical analysis involves the exposure of a sample to one or more treatments which may be used to determine the identity and/or relative concentration of constituent chemicals in that sample. Bioanalytical chemistry is one variant of this process which involves the study of samples from various, biological origins such as blood, plasma, serum, urine, tissue, bile, and cerebrospinal fluid. In some studies, large numbers of samples are generated to provide either statistical validity, or a representation of change during a dynamic process such as metabolism, which changes one chemical entity into another. Sample vials are typically small, and hold volumes on the order of 300 &mgr;L. Managing large numbers of small sample vials during a process which may involve transfer of vials to different devices, such as fraction collectors, centrifuges, autosamplers, mixers, or incubators, presents the opportunity for confusion of sample identity unless those vials are clearly labeled.
An example of a process in bioanalytical chemistry that requires clearly labeled vials is fraction collection. Fraction collection is a process which allocates fluid from a continuously flowing stream into a series of collection vessels arranged sequentially. The sequence of the collection vessels is extremely critical in several applications of fraction collection, including but not limited to, liquid chromatography, column chromatography, microdialysis sampling, automated blood sampling, and ultrafiltration sampling. The material eluting from a column, probe or other device represents a discrete series of chemical events or changes. The progress of these chemical events can be identified only through the correct sequencing of vials during subsequent analysis.
Fraction collection and the chemical analysis techniques required to analyze the collected samples rarely occur simultaneously. A normal procedure requires that samples be collected and then stored before being transferred to a separate device for analysis or further processing, such as centrifugation, heating, or freezing. Fraction collection samples are frequently collected in small, e.g. 300 &mgr;L, glass vials which may be capped and sealed before or after the collection process. These vials are loaded into an X-Y type grid or circular carousel before collection and then must be transferred to a holding device or another type of grid or carousel if they will be stored or processed for analysis. During the process of transfer, it is relatively easy for an operator to mistakenly transfer one or more vials out of the correct order or sequence. It is also possible for the operator to drop one or more vials during the transfer process, losing the sample or altering the relative order of the samples in the collection sequence.
Another process in bioanalytical chemistry that requires clearly labeled vials is autosampling. Autosampling is the “reverse” of fraction collection. During autosampling, the vials containing samples are arranged in order and then the fluid inside the vials is removed in that same sequence by the autosampler and transferred to a device such as a gas or liquid chromatograph or a mass spectrometer. Autosampling is generally done just prior to the final analysis of a material, or as part of the final analytical step. Since the correct arrangement of the vials is critical, proper sample identification is vital. Mistakes can occur since these vials are generally loaded with the sample in a remote location and during a separate process such as fraction collection, manual pipetting, or another dispensing operation.
Most methods for organizing the handling of multiple sample vials use the concept of a rack. In the rack approach vials are transferred by hand into a container which has an individual hole for each vial. These holes are typically arranged in an array of one or more rows and columns. This container or rack is then carried to the next processing step, where the vials are then either unloaded from the rack and reloaded into a different rack, or the rack itself is placed into another device so that the samples are processed in the same sequence. Obviously, the least potential for error exists in the scenario where vials are loaded into a rack, and not removed from the rack throughout the battery of analyses. However, it is rare that the user has an option of using the same rack for all steps of the process. More frequently, the fractions are collected in one rack, stored in another and finally analyzed in yet another rack. Each step requires the transfer of multiple sample vials, with the concomitant risk of dropping or misplacing samples thereby destroying the original and required sequence of vials.
The current methods of placing identification information onto three-dimensional objects are not sufficient for labeling vials used in bioanalytical chemical analysis. Using adhesive labels to apply identification information is not optimal because adhesives on labels can loosen allowing the label to detach from the vial. This detachment of the label from the vial is accelerated by freezing and or refrigeration that occurs in some bioanalytical testing procedures, as temperature changes, and condensation induced by such changes, can have a deleterious effect on adhesives. Additionally, if the identification information on the adhesive label is ink, it can become smudged and unreadable due to repeated handling and exposure to the solvents and fumes which may be used during an analytical procedure. During fraction collection, adhesive labels could critically alter test data as the labels can cant the vial to one side, ruining the critical alignment of the vial relative to a perpendicular collection cannula. Further, if the identification information on a vial needs to be changed, an additional label must be added to the vial, further affecting the alignment of the vial, or the original label must be painstakingly removed. Also, applying adhesive labels to each small vial is tedious and time-consuming.
Printing the identification information onto the surface of the vial with ink is not acceptable because the ink can become smudged and unreadable just as the ink on adhesive labels. Additionally, due to the small size of the vials and their glass or plastic construction, labeling each vial individually and legibly using a pen is a tedious and time-consuming chore. Processes such as pre-engraving, bar-coding, or stamping the identification information directly onto the vials add to the expense of each vial, require that vials be pre-arranged in order, and, depending on the process used, may not provide numbers or codes that are easily readable, or readable without a special device such as a bar-code scanner. Additionally, any identification information placed directly onto vials by processes such as these do not permit easy alteration of the information. Such alteration may be desirable, for example

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device, system and method for labeling three-dimensional... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device, system and method for labeling three-dimensional..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device, system and method for labeling three-dimensional... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030793

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.