Food or edible material: processes – compositions – and products – Addition of dye or pigment – including optical brightener
Reexamination Certificate
2000-06-16
2003-01-21
Hendricks, Keith (Department: 1761)
Food or edible material: processes, compositions, and products
Addition of dye or pigment, including optical brightener
C426S442000, C426S506000, C426S519000, C099S471000, C099S516000, C366S173200, C366S174100, C366S181500, C366S181600, C366S336000
Reexamination Certificate
active
06509049
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to introducing a fluid additive into a relatively more viscous fluid particularly when the fluid is a food composition extrudate. Specifically, in one aspect, the present invention relates to dividing a fluid food extrudate mass flow into a plurality of subflows each traveling through their own corresponding passageway. Each subflow is then cross-sectionally partitioned wherein a fluid additive is dispersed throughout each subflow.
BACKGROUND OF THE INVENTION
Food products are commonly in some type of fluid form during and/or after processing. Extruders are often used to process various types of food products. Extruders are desirable because they can produce a large amount of a fluid food, which may be a food dough, for example, and more specifically a cooked food cereal dough in a short period of time. Moreover, it is advantageous to divide the fluid food extrudate or other mass food flow into a multiplicity of extrudate subflows by splitting the mass flow and directing these extrudate subflows into and through a plurality of corresponding separate passageways. This enables each extrudate substream to be further manipulated and processed. For example, an additive injection device can then incorporated into each passageway thereby enabling a suitable type and quantity of fluid additive to be introduced into the extrudate subflow. Additives can be introduced to enhance the flavor, color or texture of the final food product. Thus, either a single food product with one or more desired characteristics (i.e., a ready-to-eat cereal of a desired color or with an assortment of differently flavored and/or colored pieces, for example) or a variety of distinct food products (i.e., an array of distinct snack foods derived from the common extrudate mass flow) can be produced by dividing the extrudate mass flow into subflows.
However, obtaining a desired degree of mixing or a homogenous mixture after introducing a fluid additive into a relatively viscous fluid food extrudate subflow or other fluid food product is troublesome. Typical food dough extrudates may have a viscosity in the range of from about 200,000 to 1,000,000 centipoise, for example. Upon introduction into a fluid food extrudate, a typically less viscous fluid additive (such as a colorant or flavorant) has a tendency to migrate to the exterior periphery of the extrudate where the additive tends to pool without blending with the food extrudate. This pooling at the extrudate's periphery prevents adequate blending of the additive throughout the extrudate mass by static mixers or other mixers located downstream from the additive injection point leaving undesirable pockets or areas of relatively high additive concentration in the extrudate mass.
Dividing a fluid food extrudate mass flow into subflows and subsequently introducing a fluid food additive has inherent shortcomings in addition to pooling or insufficient mixing. Introducing an additive injection device into the cross-sectional flow of the extrudate substream can substantially increase the pressure drop along the length of the passageway where the injection device is present. This increases the overall resistance in the system. When the original extrudate mass flow is divided into a plurality or many subflows, each travelling through a corresponding separate passageway, the additional energy required to drive the highly viscous fluid food extrudate to system's end can be substantial. Moreover, providing an independent additive supply for each additive injection device incorporated within each passageway makes it difficult to obtain a uniform introduction of additive in each of a plurality of extrudate subflow passageways.
A need exists to more uniformly introduce the same amount of additive across a plurality of food extrudate subflows travelling through separate passageways. A need also exists to more effectively reduce pooling when additive is introduced. Finally, a need exists for an additive injector device that can be easily and readily cleaned and/or sanitized.
SUMMARY OF THE INVENTION
To avoid peripheral pooling, fluid additives are introduced by inserting an additive injector into the passageway perpendicular to the longitudinal axis of the fluid food extrudate subflow. This partitions the subflow mass prior to the introduction of the additive. Splitting or partitioning has the advantage of reducing the amount of static mixing required to blend the additive in the passageway which consequently lowers the overall pressure drop of the device. In this configuration, the additive is dispersed in the center of the extrudate mass subflow thereby offsetting the tendency of the additive to migrate and pool on the extrudate's outer periphery.
In accordance with one aspect of the present invention, an apparatus for injecting a fluid additive into a viscous fluid food flow stream is provided. The apparatus includes a passageway having an interior and an exterior, including an interior wall, which passageway is suitable to accommodate a fluid food flow, which may be a cooked cereal dough, for example, or other material, through the interior of the passageway. Structure is disposed in the passageway for injecting a fluid additive into the fluid food flow in the passageway. The structure in accordance with the invention for injecting the fluid additive can be streamlined to minimize the pressure drop across the injecting structure. In addition, the injecting device may include structure to preventing fluid injected by the injector from contacting the interior wall of the passageway. Such action prevents unwanted pooling or accumulation of additive fluid at the outer portions of the fluid food stream, which can result in an unacceptable or undesirable product.
The fluid additive can be any fluid additive as desired, and may include a colorant, flavor, food supplement or any other desired fluid food additive.
In accordance with another aspect of the present invention, the structure for injecting the fluid additive into the relatively viscous fluid food stream includes a fluid additive manifold located within the passageway, which manifold may be mounted within the passageway. The manifold may be contained within an annular body or other shaped body or portion thereof as desired. A plurality of elongated ribs extend from the manifold and extend transversely across at least a portion of the passageway. Each of the ribs may have a downstream surface and a streamlined upstream surface to minimize pressure loss across the injector device. Generally, the manifold will have an internal fluid additive supply channel, with each of the ribs having an internal fluid additive or extending along an axial length of the rib that is in fluid communication with the channel and with the interior of the passageway. Communication between the channel and the interior of the passageway is achieved through a suitably configured aperture located along a central portion of the downstream portion of the rib and spaced transversely from the interior wall of the passageway. The aperture may be configured as an elongated slot.
Downstream-extending fins can be located between the interior wall of the passageway and the ends of the aperture or slot aperture. Typically, a pair of such fins will be provided for each elongated slot aperture for preventing fluid injected through the opening or slot and into the viscous fluid food flow within the passageway from contacting the interior wall of the passageway. In this manner, unwanted pooling or accumulation of the fluid additive along the wall of the passageway is prevented. Such pooling or migration to the interior wall of the passageway is undesirable because it is very difficult to properly mix, thereby creating undesirable concentrations of the additive fluid in such areas.
In accordance with another aspect of the present invention, the passageways in the fluid injector device are straight and have an exterior line of sight access to permit such passages to be readily cleaned. This is particula
Chatel Robert E.
Parsons Marcus H
Becker Drew
Hendricks Keith
Ryndak & Suri
The Quaker Oats Company
LandOfFree
Device system and method for fluid additive injection into a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device system and method for fluid additive injection into a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device system and method for fluid additive injection into a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3029344