DEVICE MANAGEMENT SYSTEM FOR MANAGING STANDARDS-COMPLIANT...

Electrical computers and digital processing systems: multicomput – Network computer configuring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S221000, C709S223000, C710S104000, C710S008000

Reexamination Certificate

active

06389464

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a universal device management system for managing multi-vendor devices using a single-standard manager to eliminate the need for multiple, device-specific, proprietary managers. The invention further relates to a site server which is configurable using Worldwide Web browser technology to translate native protocols and formats of multiple devices into a single, standards-based management protocol.
BACKGROUND OF THE INVENTION
Commercial and non-commercial organizations are becoming increasingly reliant on computer systems and the extension of information resources to remote locations via data communication networks to maintain high productivity levels, while operating within budgetary constraints. Accordingly, it is becoming increasingly important to control and manage devices such as power supplies, modems, switches, multiplexers, private branch exchanges, uninterrupted power supplies, appliances and sensors for environment control and patient monitoring, for example, at remote locations from a central management site. Communication technologies allow these organizations to communicate with remote devices; however, the maximum advantage of these communication technologies cannot be realized without well-planned, proactive management structures in place, such as standards-based management centers that are capable of supporting networks and systems from different vendors.
A number of network management systems have been proposed; however, these network management systems (NMSs) typically require agents in the devices themselves which communicate with a manager using a protocol that the manager understands. Other kinds of NMSs use the management data that is collected by a manager to create enhanced visual systems. These NMSs are characterized by a number of limitations and disadvantages.
For example, a number of device management systems are vendor-specific, non-standard systems that are capable of managing only one type of device. With reference to
FIG. 1
, devices from vendors X, Y and Z are illustrated. The devices from vendor X each comprise an agent for management through a manager available from vendor X. Likewise, the devices from vendor Y are managed by a different manager than that of vendor X. This situation requires extensive training on the part of an operator to learn the different vendor-specific management interfaces and protocols of both vendors X and Y. In addition, a number of devices, such as those of vendor Z, are unmanaged.
U.S. Pat. No. 5,261,044, to Dev et al, and U.S. Pat. No. 5,594,792, to Chouraki et al, disclose high-level, network managers, as opposed to device managers described with reference to FIG.
1
. The systems disclosed in these two patents illustrate post-processing, network management tools that manipulate data that has already been collected from managed devices and generate enhanced user displays of network configurations using collected device data. These systems manipulate data that has already been obtained from a management system and assumes that a network manager is already configured to be able to physically command a device. These systems are not concerned with communication with the devices themselves to generate raw data that can be used by any management system.
A need exists for a standards-based management system which enables virtually any device to be directly element-managed from virtually any manager. Further, a need exists for a universal device management system which brings each proprietary management system (e.g., the management systems of vendors X and Y) into a standard management domain, as well as manages devices such as those of vendor Z. Devices such as those of vendors X, Y and Z are commonly referred to as legacy devices since they were present within a system prior to the establishment of standards-based network management for that system, and are typically unmanaged or require management by a vendor-specific, non-standard management system. Organizations typically have remote sites where legacy-type devices are deployed, along with smart devices which can be managed from an umbrella-type management console employing, for example, Simple Network Management Protocol (SNMP).
SNMP is a known method for relaying network management information from devices on a network to management consoles designed to provide a comprehensive view of the network. SNMP comprises two major components, that is, the protocol itself and the Management Information Base (MIB). The protocol supports three basic operations, including Get request and response packets to receive information from a remote node, Set request packets to change a variable on a remote node, and Initiate Traps to send an event to a management station. The MIB is a set of managed objects or variables that can be managed. Each data element, such as a node table, is modeled as an object and given a unique name and identifier for management purposes. The complete definition of a managed object includes its naming nomenclature, syntax, definitions, access method (e.g., read-only or read-write) and status. SNMP utilizes an architecture that accommodates communication between one of a manager and a large number of remote agents, hereinafter referred to as SNMP agents, located throughout the network. SNMP agents use the MIB to provide a view of local data that are available for manipulation by a management console. In order for a variable to be monitored by the management console, the variable must be represented as a MIB object. The management console sends Get and Set requests to remote SNMP agents, and the SNMP agents initiate traps to the management console when unexpected events occur. Thus, most of the burden for retrieving and analyzing data rests on the management application. Unless data is requested or requested in a proactive way, little information is shown on the management console. The SNMP is a connectionless protocol that runs over the User Datagram Protocol (UDP) and Internet Protocol (IP) stack.
With continued reference to
FIG. 1
, the high development costs required to bring each proprietary device management system into a standards-based device management domain are frequently the reason why many legacy devices remain unmanaged. Legacy devices are, therefore, frequently removed from systems long before their operational life span and purpose expires. Thus, a need exists to lessen the custom development efforts required to bring such proprietary device management systems into standards-based device management domains.
The network management systems disclosed in U.S. Pat. No. 5,261,044, to Dev et al, and U.S. Pat. No. 5,594,792, to Chouraki et al, permit various devices and their characteristics and behaviors to be modeled and stored in a database which is accessed to manage the devices. The process of modeling the rules and behavior of different types of devices into data structures of model databases is typically performed by a network operator who is knowledgeable of all of the functional characteristics and operational requirements of the devices to be managed. Thus, modeling of devices for management requires specialized software programming. A need exists for an application program which guides a user in an intuitive manner when converting a non-standard management interface of a device into an integrated management interface of a universal network management system that is capable of managing devices from different vendors.
A network management system software tool developed by ObjectStream, Inc., Pleasanton, Calif., has been proposed to facilitate interface development to integrate different kinds of network elements or devices into multiple network management systems. The software comprises a proprietary editor module that is a JAVA Applet which provides a simple graphical interface to allow users to create and edit simple templates that structure the resources and attributes of different network elements in accordance with a proprietary definition for an interface. Users access the editor module

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

DEVICE MANAGEMENT SYSTEM FOR MANAGING STANDARDS-COMPLIANT... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with DEVICE MANAGEMENT SYSTEM FOR MANAGING STANDARDS-COMPLIANT..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and DEVICE MANAGEMENT SYSTEM FOR MANAGING STANDARDS-COMPLIANT... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2826793

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.