Device having multiple optical fibers

Optical waveguides – With disengagable mechanical connector – Structure surrounding optical fiber-to-fiber connection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S059000

Reexamination Certificate

active

06676299

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to the field of fiber optics. The invention more particularly concerns a device which provides for the termination of multiple optical fibers in a single ferrule.
2. Discussion of the Background
During the late 1990s and into the early 2000s, optical fiber based data transmission systems flourished. Optical fiber based systems were installed in buildings, between buildings in the same city, between buildings in different cities, and between buildings on different continents.
Optical fibers are also installed on spans which are not so expansive. Optical fibers run between devices, such as host devices used for communication or data transmission, housed within the same building. Multiple host devices are typically installed in rack-like structures. The back side of the rack structure can become entangled with multiple optical fibers. The optical fibers run between host devices located in the same rack and between host devices located on different racks. Finding a single optical fiber out of the large group of entangled optical fibers is a frustrating and time consuming process. Additionally, when optical fibers become entangled some of the optical fibers can be stressed and bent past their permissible bend radii, thus leading to optical power loss of the transmitted signal and potentially a catastrophic fracture failure of the optical fiber itself.
To combat the problem, some end-users have tried to organize the optical fibers by color coding optical fibers and also by grouping some of the optical fibers, in certain locations, together with tie-wraps. A more logical and organized approach to the management of optical fibers is provided by Advanced Interconnection Technologies, a Stratos Lightwave, Inc., company, and is commonly known as flex circuitry which can be an optical backplane. In a basic form, flex circuitry includes a flexible polymer layer onto which is applied optical fibers in a pre-set arrangement and then a second flexible polymer layer is placed on top of the optical fibers and affixed to the first flexible polymer layer so as to encase and protect and maintain the arrangement of the optical fibers. The optical fibers are typically terminated with one or a combination of more than one of the now well known fiber optic connectors, such as MT, MP, MTP/MPO, MPX, MAC, HBMT, OGI, and other connector form factors.
The ferrule
91
of
FIG. 1
is an MT-style multi-fiber optic device. The device includes a body
92
which has alignment holes
93
,
94
and apertures which accommodate terminated ends
95
of optical fibers at a mating end
101
, and a window
98
. The body
92
is formed by flowing a resin into a mold. The optical fibers
97
of the multi-fiber optical cable
96
are inserted into the body
92
until their ends are nearly flush with the mating end
101
. Then an adhesive such as an epoxy is introduced into the window
98
so as to affix the multi-fiber optical cable stripped of its matrix
97
to the body
92
. By way of example, the multi-fiber optical cable
96
can be emanating from a flex circuit, or the ferrule can terminate a ribbon cable, or any device from which at least two optical fibers protrude.
Thus, there is a need for a method or device which terminates multiple optical fibers of a single ferrule which is less time consuming to assemble, is more reliable, and is more dimensionally accurate than known methods and devices.
SUMMARY OF THE INVENTION
Therefore, it is an object of the invention to provide a device having multiple optical fibers where the device is easily assembled.
It is another object of the present invention to provide a device having multiple optical fibers where the device is reliable.
It is still yet another object of the present invention to provide a method of making a device having multiple optical fibers.
In one form of the invention, the device includes two optical fibers and a body. The body has a mating end and a splicing end. Each of the two optical fibers has a respective polished end and splicing end. The polished end of each of the two optical fibers is situated adjacent to and flush with the mating end of the body. The length of the two optical fibers is the same, where the length is defined by the distance from the splicing end to the polished end. The first optical fiber of the two optical fibers has a first length, and the second optical fiber of the two optical fibers has a second length. The length of the two optical fibers is greater than the length of the body, where the length of the body is defined by the distance from the mating end to the splicing end of the body and is known as the third length. The length of the two optical fibers is less than fifty millimeters. The two optical fibers are parallel to one another. The two optical fibers form a plane. The two optical fibers are bonded to the body.
In another form of the invention, the device includes two optical fibers, a body, and a splice protector. The body has a mating end and a splicing end. Each of the two optical fibers has a respective polished end and splicing end. The polished end of each of the two optical fibers is situated adjacent to and flush with the mating end of the body. The length of the two optical fibers is the same, where the length is defined by the distance from the splicing end to the polished end. The first optical fiber of the two optical fibers has a first length, and the second optical fiber of the two optical fibers has a second length. The length of the two optical fibers is greater than the length of the body, where the length of the body is defined by the distance from the mating end to the splicing end of the body and is known as the third length. The length of the two optical fibers is less than fifty millimeters. The two optical fibers are parallel to one another. The two optical fibers form a plane. The two optical fibers are bonded to the body. The splice protector has a first end and a second end. The first end of the splice protector is mechanically associated with the body. The splice protector has an aperture. The second end of the splice protector is separated from the mating end of the body by a fourth length. The fourth length being greater than the first length of the first optical fiber. The splicing ends of the first and second optical fibers are situated in the aperture of the splice protector.
In a variation of the above-described device, the splice protector includes a recess instead of an aperture.
In yet another form of the invention, the device is constructed as set forth by the following steps: forming a body having a mating end and a splicing end, the body having a first aperture and a second aperture; inserting a first optical fiber into the first aperture of the body, the first optical fiber having a polishing end and a splicing end, the polishing end of the first optical fiber situated adjacent to the mating end of the body; inserting a second optical fiber into the second aperture of the body, the second optical fiber having a polishing end and a splicing end, the polishing end of the second optical fiber situated adjacent to the mating end of the body; polishing the first optical fiber and the second optical fiber adjacent to the mating end of the body; inserting optical fibers of a flex circuit through an aperture of a splice protector; positioning the splicing ends of the first and second optical fibers adjacent to ends of the optical fibers of the flex circuit; splicing the splicing ends of the first and second optical fibers to the ends of the optical fibers of the flex circuit so as to form a spliced area; and mechanically associating the splice protector with the body so as that the aperture of the splice protector encompasses the spliced area of the optical fibers.
Thus, the device having multiple optical fibers and the method of making the same is superior to existing solutions since the resulting device is reliable, and is easy to assemble as compared to prior art devices and practices.


REFERENCE

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device having multiple optical fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device having multiple optical fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device having multiple optical fibers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3218870

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.